Suppr超能文献

共生体分化的C2H2转录因子调节因子抑制分泌途径基因VAMP721a的转录,并促进蒺藜苜蓿中共生体的发育。

The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula.

作者信息

Sinharoy Senjuti, Torres-Jerez Ivone, Bandyopadhyay Kaustav, Kereszt Attila, Pislariu Catalina I, Nakashima Jin, Benedito Vagner A, Kondorosi Eva, Udvardi Michael K

机构信息

The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401.

出版信息

Plant Cell. 2013 Sep;25(9):3584-601. doi: 10.1105/tpc.113.114017. Epub 2013 Sep 30.

Abstract

Transcription factors (TFs) are thought to regulate many aspects of nodule and symbiosis development in legumes, although few TFs have been characterized functionally. Here, we describe regulator of symbiosome differentiation (RSD) of Medicago truncatula, a member of the Cysteine-2/Histidine-2 (C2H2) family of plant TFs that is required for normal symbiosome differentiation during nodule development. RSD is expressed in a nodule-specific manner, with maximal transcript levels in the bacterial invasion zone. A tobacco (Nicotiana tabacum) retrotransposon (Tnt1) insertion rsd mutant produced nodules that were unable to fix nitrogen and that contained incompletely differentiated symbiosomes and bacteroids. RSD protein was localized to the nucleus, consistent with a role of the protein in transcriptional regulation. RSD acted as a transcriptional repressor in a heterologous yeast assay. Transcriptome analysis of an rsd mutant identified 11 genes as potential targets of RSD repression. RSD interacted physically with the promoter of one of these genes, VAMP721a, which encodes vesicle-associated membrane protein 721a. Thus, RSD may influence symbiosome development in part by repressing transcription of VAMP721a and modifying vesicle trafficking in nodule cells. This establishes RSD as a TF implicated directly in symbiosome and bacteroid differentiation and a transcriptional regulator of secretory pathway genes in plants.

摘要

转录因子(TFs)被认为在豆科植物根瘤和共生发育的许多方面发挥调控作用,尽管只有少数转录因子的功能得到了表征。在这里,我们描述了蒺藜苜蓿的共生体分化调节因子(RSD),它是植物转录因子中半胱氨酸-2/组氨酸-2(C2H2)家族的成员,在根瘤发育过程中正常共生体分化是必需的。RSD以根瘤特异性方式表达,在细菌侵入区转录水平最高。烟草(Nicotiana tabacum)反转录转座子(Tnt1)插入rsd突变体产生的根瘤无法固氮,并且含有未完全分化的共生体和类菌体。RSD蛋白定位于细胞核,这与该蛋白在转录调控中的作用一致。在异源酵母试验中,RSD作为转录抑制因子发挥作用。对rsd突变体的转录组分析确定了11个基因作为RSD抑制的潜在靶点。RSD与其中一个基因VAMP721a的启动子发生物理相互作用,该基因编码囊泡相关膜蛋白721a。因此,RSD可能部分通过抑制VAMP721a的转录并改变根瘤细胞中的囊泡运输来影响共生体发育。这确立了RSD作为直接参与共生体和类菌体分化的转录因子以及植物分泌途径基因的转录调节因子的地位。

相似文献

2
Two direct targets of cytokinin signaling regulate symbiotic nodulation in Medicago truncatula.
Plant Cell. 2012 Sep;24(9):3838-52. doi: 10.1105/tpc.112.103267. Epub 2012 Sep 28.
3
Transcription of ENOD8 in Medicago truncatula nodules directs ENOD8 esterase to developing and mature symbiosomes.
Mol Plant Microbe Interact. 2008 Apr;21(4):404-10. doi: 10.1094/MPMI-21-4-0404.
4
A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis.
Science. 2010 Feb 26;327(5969):1126-9. doi: 10.1126/science.1184096.
5
The Nodule-Specific PLAT Domain Protein NPD1 Is Required for Nitrogen-Fixing Symbiosis.
Plant Physiol. 2019 Jul;180(3):1480-1497. doi: 10.1104/pp.18.01613. Epub 2019 May 6.
6
Multiple domains in MtENOD8 protein including the signal peptide target it to the symbiosome.
Plant Physiol. 2012 May;159(1):299-310. doi: 10.1104/pp.111.191403. Epub 2012 Mar 13.
7
EFD Is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula.
Plant Cell. 2008 Oct;20(10):2696-713. doi: 10.1105/tpc.108.059857. Epub 2008 Oct 31.
9
Rhizobial infection is associated with the development of peripheral vasculature in nodules of Medicago truncatula.
Plant Physiol. 2013 May;162(1):107-15. doi: 10.1104/pp.113.215111. Epub 2013 Mar 27.
10
Medicago truncatula esn1 defines a genetic locus involved in nodule senescence and symbiotic nitrogen fixation.
Mol Plant Microbe Interact. 2013 Aug;26(8):893-902. doi: 10.1094/MPMI-02-13-0043-R.

引用本文的文献

2
Defense and senescence interplay in legume nodules.
Plant Commun. 2024 Apr 8;5(4):100888. doi: 10.1016/j.xplc.2024.100888. Epub 2024 Mar 26.
4
OROSOMUCOID PROTEIN 1 regulation of sphingolipid synthesis is required for nodulation in Aeschynomene evenia.
Plant Physiol. 2024 Feb 29;194(3):1611-1630. doi: 10.1093/plphys/kiad642.
6
Comparative phylotranscriptomics reveals ancestral and derived root nodule symbiosis programmes.
Nat Plants. 2023 Jul;9(7):1067-1080. doi: 10.1038/s41477-023-01441-w. Epub 2023 Jun 15.
9
10
Expression and Variation of the Genes Involved in Rhizobium Nodulation in Red Clover.
Plants (Basel). 2022 Oct 28;11(21):2888. doi: 10.3390/plants11212888.

本文引用的文献

1
Rapid analysis of legume root nodule development using confocal microscopy.
New Phytol. 2004 Sep;163(3):661-668. doi: 10.1111/j.1469-8137.2004.01138.x.
2
cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules.
PLoS One. 2013 May 29;8(5):e64377. doi: 10.1371/journal.pone.0064377. Print 2013.
3
5
Transport and metabolism in legume-rhizobia symbioses.
Annu Rev Plant Biol. 2013;64:781-805. doi: 10.1146/annurev-arplant-050312-120235. Epub 2013 Mar 1.
6
LjMATE1: a citrate transporter responsible for iron supply to the nodule infection zone of Lotus japonicus.
Plant Cell Physiol. 2013 Apr;54(4):585-94. doi: 10.1093/pcp/pct019. Epub 2013 Feb 5.
8
The SNARE protein SYP71 expressed in vascular tissues is involved in symbiotic nitrogen fixation in Lotus japonicus nodules.
Plant Physiol. 2012 Oct;160(2):897-905. doi: 10.1104/pp.112.200782. Epub 2012 Aug 2.
9
What determines the efficiency of N(2)-fixing Rhizobium-legume symbioses?
Adv Microb Physiol. 2012;60:325-89. doi: 10.1016/B978-0-12-398264-3.00005-X.
10
Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation.
Proc Natl Acad Sci U S A. 2012 May 22;109(21):8316-21. doi: 10.1073/pnas.1200407109. Epub 2012 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验