Suppr超能文献

具有可见光区增强光催化活性的核壳结构α-Fe2O3@TiO2 纳米复合材料。

Core-shell structured α-Fe2O3@TiO2 nanocomposites with improved photocatalytic activity in the visible light region.

机构信息

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China.

出版信息

Phys Chem Chem Phys. 2013 Nov 14;15(42):18627-34. doi: 10.1039/c3cp53178c.

Abstract

The core-shell structured Fe2O3@TiO2 nanocomposites prepared via a heteroepitaxial growth route using the Fe2O3 spindle as a hard template display improved photocatalytic degradation activity for Rhodamine B dye under visible light irradiation. The ratio of α-Fe2O3 : TiO2 in the α-Fe2O3@TiO2 core-shell nanocomposites can be tuned by etching the α-Fe2O3 core via controlling the concentration of HCl and etching time. An appropriate concentration of the Fe2O3 core could effectively induce a transition of the optical response from the UV to the visible region and decrease the recombination rate of photogenerated electrons and the holes of the core-shell structured catalyst, greatly contributing to the enhancement of visible light response and visible light photocatalytic activity of the Fe2O3@TiO2 catalysts. It is revealed that the optical response and photocatalytic performance of the core-shell α-Fe2O3@TiO2 nanocomposites can be tuned by adjusting the molar ratio of Fe2O3 : TiO2 of the α-Fe2O3@TiO2 nanocomposites. The α-Fe2O3@TiO2 core-shell nanocomposite with an optimal molar ratio of 7% for Fe2O3 : TiO2 exhibits the best photocatalytic performance under visible light irradiation. It is shown that the Fe2O3/TiO2 heterojunction structure is responsible for the efficient visible-light photocatalytic activity. As the concentration of Fe2O3 is high, Fe(3+) ions will act as recombination centres of the photogenerated electrons and holes. The present core-shell Fe2O3@TiO2 nanoparticles displaying enhanced photodegradation activity could find potential applications as photocatalysts for the abatement of various organic pollutants.

摘要

采用异质外延生长路线,以 Fe2O3 纺锤为硬模板制备的核壳结构 Fe2O3@TiO2 纳米复合材料显示出在可见光照射下对 Rhodamine B 染料的光催化降解活性得到提高。通过控制 HCl 的浓度和蚀刻时间,可以调整α-Fe2O3@TiO2 核壳纳米复合材料中α-Fe2O3:TiO2 的比例。适当浓度的 Fe2O3 核可以有效地将光响应从紫外区诱导到可见区,并降低核壳结构催化剂中光生电子和空穴的复合率,极大地有助于增强 Fe2O3@TiO2 催化剂的可见光响应和可见光光催化活性。结果表明,通过调整α-Fe2O3@TiO2 纳米复合材料中 Fe2O3:TiO2 的摩尔比,可以调谐核壳α-Fe2O3@TiO2 纳米复合材料的光学响应和光催化性能。当 Fe2O3:TiO2 的摩尔比为 7%时,α-Fe2O3@TiO2 核壳纳米复合材料在可见光照射下表现出最佳的光催化性能。结果表明,Fe2O3/TiO2 异质结结构是其具有高效可见光光催化活性的原因。当 Fe2O3 的浓度较高时,Fe(3+) 离子将充当光生电子和空穴的复合中心。本研究制备的具有增强光降解活性的核壳 Fe2O3@TiO2 纳米颗粒可作为消除各种有机污染物的光催化剂具有潜在应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验