Suppr超能文献

神经同步下的震荡相位动力学为时间的错觉知觉提供了基础。

Oscillatory phase dynamics in neural entrainment underpin illusory percepts of time.

机构信息

Max Planck Research Group "Auditory Cognition" and Department of Neuropsychology at the Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.

出版信息

J Neurosci. 2013 Oct 2;33(40):15799-809. doi: 10.1523/JNEUROSCI.1434-13.2013.

Abstract

Neural oscillatory dynamics are a candidate mechanism to steer perception of time and temporal rate change. While oscillator models of time perception are strongly supported by behavioral evidence, a direct link to neural oscillations and oscillatory entrainment has not yet been provided. In addition, it has thus far remained unaddressed how context-induced illusory percepts of time are coded for in oscillator models of time perception. To investigate these questions, we used magnetoencephalography and examined the neural oscillatory dynamics that underpin pitch-induced illusory percepts of temporal rate change. Human participants listened to frequency-modulated sounds that varied over time in both modulation rate and pitch, and judged the direction of rate change (decrease vs increase). Our results demonstrate distinct neural mechanisms of rate perception: Modulation rate changes directly affected listeners' rate percept as well as the exact frequency of the neural oscillation. However, pitch-induced illusory rate changes were unrelated to the exact frequency of the neural responses. The rate change illusion was instead linked to changes in neural phase patterns, which allowed for single-trial decoding of percepts. That is, illusory underestimations or overestimations of perceived rate change were tightly coupled to increased intertrial phase coherence and changes in cerebro-acoustic phase lag. The results provide insight on how illusory percepts of time are coded for by neural oscillatory dynamics.

摘要

神经振荡动力学是一种引导时间感知和时间率变化感知的候选机制。虽然时间感知的振荡器模型得到了行为证据的强烈支持,但尚未提供与神经振荡和振荡同步的直接联系。此外,到目前为止,还没有解决在时间感知的振荡器模型中,如何对时间的上下文诱导的错觉感知进行编码。为了研究这些问题,我们使用了脑磁图,并研究了支持音高诱导的时间率变化错觉感知的神经振荡动力学。人类参与者听随时间变化的调制率和音高变化的调频声音,并判断率变化的方向(减少与增加)。我们的结果表明存在不同的率感知神经机制:调制率变化直接影响了听众的率感知以及神经振荡的精确频率。然而,音高诱导的错觉率变化与神经反应的精确频率无关。率变化错觉与神经相位模式的变化有关,这允许对感知进行单次试验解码。也就是说,感知到的率变化的错觉低估或高估与试验间相位相干性的增加以及脑声相位滞后的变化紧密相关。结果提供了关于神经振荡动力学如何对时间的错觉感知进行编码的见解。

相似文献

1
Oscillatory phase dynamics in neural entrainment underpin illusory percepts of time.
J Neurosci. 2013 Oct 2;33(40):15799-809. doi: 10.1523/JNEUROSCI.1434-13.2013.
2
Sound-induced illusory flash perception: role of gamma band responses.
Neuroreport. 2002 Oct 7;13(14):1727-30. doi: 10.1097/00001756-200210070-00007.
4
Supplementary motor area activations predict individual differences in temporal-change sensitivity and its illusory distortions.
Neuroimage. 2014 Nov 1;101:370-9. doi: 10.1016/j.neuroimage.2014.07.026. Epub 2014 Jul 23.
5
Hearing illusory sounds in noise: sensory-perceptual transformations in primary auditory cortex.
J Neurosci. 2007 Nov 14;27(46):12684-9. doi: 10.1523/JNEUROSCI.2713-07.2007.
6
The Role of Oscillatory Phase in Determining the Temporal Organization of Perception: Evidence from Sensory Entrainment.
J Neurosci. 2017 Nov 1;37(44):10636-10644. doi: 10.1523/JNEUROSCI.1704-17.2017. Epub 2017 Oct 2.
7
Oscillatory Properties of Functional Connections Between Sensory Areas Mediate Cross-Modal Illusory Perception.
J Neurosci. 2019 Jul 17;39(29):5711-5718. doi: 10.1523/JNEUROSCI.3184-18.2019. Epub 2019 May 20.
8
Frequency modulation entrains slow neural oscillations and optimizes human listening behavior.
Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20095-100. doi: 10.1073/pnas.1213390109. Epub 2012 Nov 14.
9
Involvement of ordinary what and where auditory cortical areas during illusory perception.
Brain Struct Funct. 2018 Mar;223(2):965-979. doi: 10.1007/s00429-017-1538-4. Epub 2017 Oct 25.
10
Encoding of event timing in the phase of neural oscillations.
Neuroimage. 2014 May 15;92:274-84. doi: 10.1016/j.neuroimage.2014.02.010. Epub 2014 Feb 13.

引用本文的文献

1
Pitch biases sensorimotor synchronization to auditory rhythms.
Sci Rep. 2025 May 16;15(1):17012. doi: 10.1038/s41598-025-00827-4.
2
Musical neurodynamics.
Nat Rev Neurosci. 2025 May;26(5):293-307. doi: 10.1038/s41583-025-00915-4. Epub 2025 Mar 18.
3
Pitch-induced illusory percepts of time.
Atten Percept Psychophys. 2025 Feb;87(2):545-564. doi: 10.3758/s13414-024-02982-8. Epub 2024 Dec 10.
5
Hearing loss and brain plasticity: the hyperactivity phenomenon.
Brain Struct Funct. 2021 Sep;226(7):2019-2039. doi: 10.1007/s00429-021-02313-9. Epub 2021 Jun 7.
6
Modulation Spectra Capture EEG Responses to Speech Signals and Drive Distinct Temporal Response Functions.
eNeuro. 2021 Jan 14;8(1). doi: 10.1523/ENEURO.0399-20.2020. Print 2021 Jan-Feb.
8
Theta and Gamma Bands Encode Acoustic Dynamics over Wide-Ranging Timescales.
Cereb Cortex. 2020 Apr 14;30(4):2600-2614. doi: 10.1093/cercor/bhz263.
9
Rhythmic Temporal Expectation Boosts Neural Activity by Increasing Neural Gain.
J Neurosci. 2019 Dec 4;39(49):9806-9817. doi: 10.1523/JNEUROSCI.0925-19.2019. Epub 2019 Oct 29.
10
Perceptual Oscillation of Audiovisual Time Simultaneity.
eNeuro. 2018 May 25;5(3). doi: 10.1523/ENEURO.0047-18.2018. eCollection 2018 May-Jun.

本文引用的文献

1
Perceptual distortions in pitch and time reveal active prediction and support for an auditory pitch-motion hypothesis.
PLoS One. 2013 Aug 6;8(8):e70646. doi: 10.1371/journal.pone.0070646. Print 2013.
2
The spectrotemporal filter mechanism of auditory selective attention.
Neuron. 2013 Feb 20;77(4):750-61. doi: 10.1016/j.neuron.2012.11.034.
3
Frequency modulation entrains slow neural oscillations and optimizes human listening behavior.
Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20095-100. doi: 10.1073/pnas.1213390109. Epub 2012 Nov 14.
4
Neural Oscillations Carry Speech Rhythm through to Comprehension.
Front Psychol. 2012 Sep 6;3:320. doi: 10.3389/fpsyg.2012.00320. eCollection 2012.
5
Neural Oscillations in Speech: Don't be Enslaved by the Envelope.
Front Hum Neurosci. 2012 Aug 31;6:250. doi: 10.3389/fnhum.2012.00250. eCollection 2012.
6
The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes.
Nat Rev Neurosci. 2012 May 18;13(6):407-20. doi: 10.1038/nrn3241.
7
Examining auditory kappa effects through manipulating intensity differences between sequential tones.
Psychol Res. 2013 Jul;77(4):480-91. doi: 10.1007/s00426-012-0438-8. Epub 2012 Apr 27.
8
Tempo mediates the involvement of motor areas in beat perception.
Ann N Y Acad Sci. 2012 Apr;1252:77-84. doi: 10.1111/j.1749-6632.2011.06433.x.
10
EEG phase patterns reflect the selectivity of neural firing.
Cereb Cortex. 2013 Feb;23(2):389-98. doi: 10.1093/cercor/bhs031. Epub 2012 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验