Suppr超能文献

调制谱捕捉脑电图对语音信号的反应并驱动不同的时间响应函数。

Modulation Spectra Capture EEG Responses to Speech Signals and Drive Distinct Temporal Response Functions.

作者信息

Teng Xiangbin, Meng Qinglin, Poeppel David

机构信息

Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Frankfurt 60322, Germany

Acoustic Laboratory, School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China.

出版信息

eNeuro. 2021 Jan 14;8(1). doi: 10.1523/ENEURO.0399-20.2020. Print 2021 Jan-Feb.

Abstract

Speech signals have a unique shape of long-term modulation spectrum that is distinct from environmental noise, music, and non-speech vocalizations. Does the human auditory system adapt to the speech long-term modulation spectrum and efficiently extract critical information from speech signals? To answer this question, we tested whether neural responses to speech signals can be captured by specific modulation spectra of non-speech acoustic stimuli. We generated amplitude modulated (AM) noise with the speech modulation spectrum and 1/f modulation spectra of different exponents to imitate temporal dynamics of different natural sounds. We presented these AM stimuli and a 10-min piece of natural speech to 19 human participants undergoing electroencephalography (EEG) recording. We derived temporal response functions (TRFs) to the AM stimuli of different spectrum shapes and found distinct neural dynamics for each type of TRFs. We then used the TRFs of AM stimuli to predict neural responses to the speech signals, and found that (1) the TRFs of AM modulation spectra of exponents 1, 1.5, and 2 preferably captured EEG responses to speech signals in the δ band and (2) the θ neural band of speech neural responses can be captured by the AM stimuli of an exponent of 0.75. Our results suggest that the human auditory system shows specificity to the long-term modulation spectrum and is equipped with characteristic neural algorithms tailored to extract critical acoustic information from speech signals.

摘要

语音信号具有独特的长期调制谱形状,这与环境噪声、音乐和非语音发声不同。人类听觉系统是否适应语音长期调制谱并有效地从语音信号中提取关键信息?为了回答这个问题,我们测试了对语音信号的神经反应是否可以被非语音声学刺激的特定调制谱捕获。我们生成了具有语音调制谱和不同指数的1/f调制谱的调幅(AM)噪声,以模仿不同自然声音的时间动态。我们将这些AM刺激和一段10分钟的自然语音呈现给19名正在接受脑电图(EEG)记录的人类参与者。我们推导了对不同谱形状的AM刺激的时间响应函数(TRF),并发现每种类型的TRF都有不同的神经动态。然后,我们使用AM刺激的TRF来预测对语音信号的神经反应,发现(1)指数为1、1.5和2的AM调制谱的TRF最好地捕获了δ波段中对语音信号的EEG反应,以及(2)语音神经反应的θ神经波段可以被指数为0.75的AM刺激捕获。我们的结果表明,人类听觉系统对长期调制谱表现出特异性,并配备了专门用于从语音信号中提取关键声学信息的特征神经算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7930/7810259/ae3b450fb3bb/SN-ENUJ200319F001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验