Suppr超能文献

嘈杂的连续时间随机游走。

Noisy continuous time random walks.

机构信息

Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland.

出版信息

J Chem Phys. 2013 Sep 28;139(12):121916. doi: 10.1063/1.4816635.

Abstract

Experimental studies of the diffusion of biomolecules within biological cells are routinely confronted with multiple sources of stochasticity, whose identification renders the detailed data analysis of single molecule trajectories quite intricate. Here, we consider subdiffusive continuous time random walks that represent a seminal model for the anomalous diffusion of tracer particles in complex environments. This motion is characterized by multiple trapping events with infinite mean sojourn time. In real physical situations, however, instead of the full immobilization predicted by the continuous time random walk model, the motion of the tracer particle shows additional jiggling, for instance, due to thermal agitation of the environment. We here present and analyze in detail an extension of the continuous time random walk model. Superimposing the multiple trapping behavior with additive Gaussian noise of variable strength, we demonstrate that the resulting process exhibits a rich variety of apparent dynamic regimes. In particular, such noisy continuous time random walks may appear ergodic, while the bare continuous time random walk exhibits weak ergodicity breaking. Detailed knowledge of this behavior will be useful for the truthful physical analysis of experimentally observed subdiffusion.

摘要

在生物细胞内生物分子扩散的实验研究中,经常会遇到多种随机源,识别这些随机源使得对单个分子轨迹的详细数据分析变得非常复杂。在这里,我们考虑亚扩散连续时间随机行走,这是示踪粒子在复杂环境中异常扩散的主要模型。这种运动的特征是具有无限平均逗留时间的多次捕获事件。然而,在实际物理情况下,示踪粒子的运动并没有完全被连续时间随机行走模型所预测的那样固定,而是表现出额外的抖动,例如,由于环境的热搅动。我们在这里详细介绍和分析了连续时间随机行走模型的扩展。通过将多次捕获行为与可变强度的附加高斯噪声叠加,我们证明了所得到的过程表现出丰富的各种明显的动态状态。特别是,这种嘈杂的连续时间随机行走可能表现出遍历性,而裸连续时间随机行走表现出弱遍历性破坏。对这种行为的详细了解将有助于对实验观察到的亚扩散进行真实的物理分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验