Department of Mathematics, CSUN, Los Angeles, California 91330-8313, USA.
J Chem Phys. 2013 Sep 28;139(12):121918. doi: 10.1063/1.4817202.
We analyze a fully stochastic model of heterogeneous nucleation and self-assembly in a closed system with a fixed total particle number M, and a fixed number of seeds Ns. Each seed can bind a maximum of N particles. A discrete master equation for the probability distribution of the cluster sizes is derived and the corresponding cluster concentrations are found using kinetic Monte-Carlo simulations in terms of the density of seeds, the total mass, and the maximum cluster size. In the limit of slow detachment, we also find new analytic expressions and recursion relations for the cluster densities at intermediate times and at equilibrium. Our analytic and numerical findings are compared with those obtained from classical mass-action equations and the discrepancies between the two approaches analyzed.
我们分析了一个在封闭系统中具有固定总粒子数 M 和固定种子数 Ns 的异质成核和自组装的全随机模型。每个种子最多可以结合 N 个粒子。我们推导出了用于簇大小概率分布的离散主方程,并使用动力学蒙特卡罗模拟根据种子密度、总质量和最大簇大小找到了相应的簇浓度。在缓慢脱离的极限下,我们还找到了中间时间和平衡时的簇密度的新解析表达式和递归关系。我们的分析和数值结果与从经典质量作用方程获得的结果进行了比较,并分析了这两种方法之间的差异。