Suppr超能文献

组合分析异质随机自组装。

Combinatoric analysis of heterogeneous stochastic self-assembly.

机构信息

Department of Mathematics, CSUN, Los Angeles, California 91330-8313, USA.

出版信息

J Chem Phys. 2013 Sep 28;139(12):121918. doi: 10.1063/1.4817202.

Abstract

We analyze a fully stochastic model of heterogeneous nucleation and self-assembly in a closed system with a fixed total particle number M, and a fixed number of seeds Ns. Each seed can bind a maximum of N particles. A discrete master equation for the probability distribution of the cluster sizes is derived and the corresponding cluster concentrations are found using kinetic Monte-Carlo simulations in terms of the density of seeds, the total mass, and the maximum cluster size. In the limit of slow detachment, we also find new analytic expressions and recursion relations for the cluster densities at intermediate times and at equilibrium. Our analytic and numerical findings are compared with those obtained from classical mass-action equations and the discrepancies between the two approaches analyzed.

摘要

我们分析了一个在封闭系统中具有固定总粒子数 M 和固定种子数 Ns 的异质成核和自组装的全随机模型。每个种子最多可以结合 N 个粒子。我们推导出了用于簇大小概率分布的离散主方程,并使用动力学蒙特卡罗模拟根据种子密度、总质量和最大簇大小找到了相应的簇浓度。在缓慢脱离的极限下,我们还找到了中间时间和平衡时的簇密度的新解析表达式和递归关系。我们的分析和数值结果与从经典质量作用方程获得的结果进行了比较,并分析了这两种方法之间的差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验