Suppr超能文献

随机的不调和团簇的自组装。

Stochastic self-assembly of incommensurate clusters.

机构信息

Department of Mathematics, CSUN, Los Angeles, California 91330-8313, USA.

出版信息

J Chem Phys. 2012 Feb 28;136(8):084110. doi: 10.1063/1.3688231.

Abstract

Nucleation and molecular aggregation are important processes in numerous physical and biological systems. In many applications, these processes often take place in confined spaces, involving a finite number of particles. Analogous to treatments of stochastic chemical reactions, we examine the classic problem of homogeneous nucleation and self-assembly by deriving and analyzing a fully discrete stochastic master equation. We enumerate the highest probability steady states, and derive exact analytical formulae for quenched and equilibrium mean cluster size distributions. Upon comparison with results obtained from the associated mass-action Becker-Döring equations, we find striking differences between the two corresponding equilibrium mean cluster concentrations. These differences depend primarily on the divisibility of the total available mass by the maximum allowed cluster size, and the remainder. When such mass "incommensurability" arises, a single remainder particle can "emulsify" the system by significantly broadening the equilibrium mean cluster size distribution. This discreteness-induced broadening effect is periodic in the total mass of the system but arises even when the system size is asymptotically large, provided the ratio of the total mass to the maximum cluster size is finite. Ironically, classic mass-action equations are fairly accurate in the coarsening regime, before equilibrium is reached, despite the presence of large stochastic fluctuations found via kinetic Monte-Carlo simulations. Our findings define a new scaling regime in which results from classic mass-action theories are qualitatively inaccurate, even in the limit of large total system size.

摘要

成核和分子聚集是许多物理和生物系统中的重要过程。在许多应用中,这些过程通常发生在受限空间中,涉及有限数量的粒子。类似于随机化学反应的处理方法,我们通过推导出并分析一个完全离散的随机主方程来研究均相成核和自组装的经典问题。我们列举了最高概率的稳态,并为淬火和平衡平均团簇大小分布推导出了精确的解析公式。通过与相关的质量作用 Becker-Döring 方程的结果进行比较,我们发现两种对应平衡平均团簇浓度之间存在显著差异。这些差异主要取决于总可用质量与最大允许团簇大小之间的可分性,以及余数。当出现这种质量“不可公度性”时,单个余数粒子可以通过显著拓宽平衡平均团簇大小分布来“乳化”系统。这种离散诱导的展宽效应在系统的总质量中是周期性的,但即使在系统尺寸渐近大的情况下,只要总质量与最大团簇尺寸的比值是有限的,就会出现这种效应。具有讽刺意味的是,尽管通过动力学蒙特卡罗模拟发现了大的随机涨落,但经典的质量作用方程在达到平衡之前的粗化阶段相当准确。我们的发现定义了一个新的标度规则,在这个规则中,即使在总系统尺寸很大的情况下,经典质量作用理论的结果也在定性上是不准确的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验