Suppr超能文献

用于栓塞生物医学应用的低密度可生物降解形状记忆聚氨酯泡沫。

Low density biodegradable shape memory polyurethane foams for embolic biomedical applications.

机构信息

Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA; Department of Biomedical Engineering, 5045 Emerging Technologies Building, 3120 Texas A&M University, College Station, TX 77843-3120, USA.

出版信息

Acta Biomater. 2014 Jan;10(1):67-76. doi: 10.1016/j.actbio.2013.09.027. Epub 2013 Oct 1.

Abstract

Low density shape memory polymer foams hold significant interest in the biomaterials community for their potential use in minimally invasive embolic biomedical applications. The unique shape memory behavior of these foams allows them to be compressed to a miniaturized form, which can be delivered to an anatomical site via a transcatheter process and thereafter actuated to embolize the desired area. Previous work in this field has described the use of a highly covalently crosslinked polymer structure for maintaining excellent mechanical and shape memory properties at the application-specific ultralow densities. This work is aimed at further expanding the utility of these biomaterials, as implantable low density shape memory polymer foams, by introducing controlled biodegradability. A highly covalently crosslinked network structure was maintained by use of low molecular weight, symmetrical and polyfunctional hydroxyl monomers such as polycaprolactone triol (PCL-t, Mn= 900 g), N,N,N0,N0-tetrakis(hydroxypropyl)ethylenediamine and tris(2-hydroxyethyl)amine. Control over the degradation rate of the materials was achieved by changing the concentration of the degradable PCL-t monomer and by varying the material hydrophobicity. These porous SMP materials exhibit a uniform cell morphology and excellent shape recovery, along with controllable actuation temperature and degradation rate. We believe that they form a new class of low density biodegradable SMP scaffolds that can potentially be used as "smart" non-permanent implants in multiple minimally invasive biomedical applications.

摘要

低密度形状记忆聚合物泡沫因其在微创栓塞生物医学应用中的潜在用途而在生物材料界引起了极大的兴趣。这些泡沫独特的形状记忆行为使它们能够被压缩到微型化的形式,通过经导管过程输送到解剖部位,然后被激活以栓塞所需的区域。该领域的先前工作已经描述了使用高度共价交联的聚合物结构来维持在特定应用的超低密度下的优异机械性能和形状记忆性能。这项工作旨在通过引入可控的生物降解性来进一步扩展这些生物材料的用途,即作为可植入的低密度形状记忆聚合物泡沫。通过使用低分子量、对称和多官能羟基单体,如聚己内酯三醇(PCL-t,Mn=900 g)、N,N,N0,N0-四(羟丙基)乙二胺和三(2-羟乙基)胺,保持了高度共价交联的网络结构。通过改变可降解 PCL-t 单体的浓度和改变材料的疏水性来控制材料的降解速率。这些多孔 SMP 材料表现出均匀的细胞形态和优异的形状恢复能力,以及可控的致动温度和降解速率。我们相信,它们形成了一类新的低密度可生物降解的 SMP 支架,可潜在地用作多种微创生物医学应用中的“智能”非永久性植入物。

相似文献

5
Post-Crosslinked Polyurethanes with Excellent Shape Memory Property.交联型聚氨酯的形状记忆性能优异。
Macromol Rapid Commun. 2017 Dec;38(23). doi: 10.1002/marc.201700450. Epub 2017 Oct 30.

引用本文的文献

5
Recycling of Polyurethane via Mechanocatalytic Methanolysis/Hydrolysis.通过机械催化甲醇解/水解回收聚氨酯
ChemSusChem. 2025 Jun 17;18(12):e202500253. doi: 10.1002/cssc.202500253. Epub 2025 Apr 9.

本文引用的文献

4
Porous Shape Memory Polymers.多孔形状记忆聚合物
Polym Rev (Phila Pa). 2013 Feb 4;53(1):41-75. doi: 10.1080/15583724.2012.751399.
9
Biomedical Applications of Biodegradable Polymers.可生物降解聚合物的生物医学应用
J Polym Sci B Polym Phys. 2011 Jun 15;49(12):832-864. doi: 10.1002/polb.22259.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验