Department of Physics and Interdisciplinary Center for Network Science and Applications, University of Notre Dame, Notre Dame, IN 46556, USA; Faculty of Physics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania.
Neuron. 2013 Oct 2;80(1):184-97. doi: 10.1016/j.neuron.2013.07.036.
Recent advances in neuroscience have engendered interest in large-scale brain networks. Using a consistent database of cortico-cortical connectivity, generated from hemisphere-wide, retrograde tracing experiments in the macaque, we analyzed interareal weights and distances to reveal an important organizational principle of brain connectivity. Using appropriate graph theoretical measures, we show that although very dense (66%), the interareal network has strong structural specificity. Connection weights exhibit a heavy-tailed lognormal distribution spanning five orders of magnitude and conform to a distance rule reflecting exponential decay with interareal separation. A single-parameter random graph model based on this rule predicts numerous features of the cortical network: (1) the existence of a network core and the distribution of cliques, (2) global and local binary properties, (3) global and local weight-based communication efficiencies modeled as network conductance, and (4) overall wire-length minimization. These findings underscore the importance of distance and weight-based heterogeneity in cortical architecture and processing.
神经科学的最新进展引发了人们对大规模脑网络的兴趣。我们利用猕猴半球范围逆行示踪实验生成的皮质皮质连接一致数据库,分析了脑区间权重和距离,以揭示大脑连接的一个重要组织原则。使用适当的图论度量,我们表明,尽管连接非常密集(66%),但脑区间网络具有很强的结构特异性。连接权重呈现出跨越五个数量级的重尾对数正态分布,并符合反映与脑区间分离的指数衰减的距离规则。基于该规则的单参数随机图模型预测了皮质网络的许多特征:(1)网络核心和团块的存在,(2)全局和局部二进制属性,(3)全局和局部基于权重的通信效率,模拟为网络电导率,以及(4)整体线长最小化。这些发现强调了距离和基于权重的异质性在皮质结构和处理中的重要性。