Suppr超能文献

基于距离规则的皮质连接预测网络模型。

A predictive network model of cerebral cortical connectivity based on a distance rule.

机构信息

Department of Physics and Interdisciplinary Center for Network Science and Applications, University of Notre Dame, Notre Dame, IN 46556, USA; Faculty of Physics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania.

出版信息

Neuron. 2013 Oct 2;80(1):184-97. doi: 10.1016/j.neuron.2013.07.036.

Abstract

Recent advances in neuroscience have engendered interest in large-scale brain networks. Using a consistent database of cortico-cortical connectivity, generated from hemisphere-wide, retrograde tracing experiments in the macaque, we analyzed interareal weights and distances to reveal an important organizational principle of brain connectivity. Using appropriate graph theoretical measures, we show that although very dense (66%), the interareal network has strong structural specificity. Connection weights exhibit a heavy-tailed lognormal distribution spanning five orders of magnitude and conform to a distance rule reflecting exponential decay with interareal separation. A single-parameter random graph model based on this rule predicts numerous features of the cortical network: (1) the existence of a network core and the distribution of cliques, (2) global and local binary properties, (3) global and local weight-based communication efficiencies modeled as network conductance, and (4) overall wire-length minimization. These findings underscore the importance of distance and weight-based heterogeneity in cortical architecture and processing.

摘要

神经科学的最新进展引发了人们对大规模脑网络的兴趣。我们利用猕猴半球范围逆行示踪实验生成的皮质皮质连接一致数据库,分析了脑区间权重和距离,以揭示大脑连接的一个重要组织原则。使用适当的图论度量,我们表明,尽管连接非常密集(66%),但脑区间网络具有很强的结构特异性。连接权重呈现出跨越五个数量级的重尾对数正态分布,并符合反映与脑区间分离的指数衰减的距离规则。基于该规则的单参数随机图模型预测了皮质网络的许多特征:(1)网络核心和团块的存在,(2)全局和局部二进制属性,(3)全局和局部基于权重的通信效率,模拟为网络电导率,以及(4)整体线长最小化。这些发现强调了距离和基于权重的异质性在皮质结构和处理中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f55/3954498/7a0d36898d72/nihms552162f1.jpg

相似文献

3
Cortical high-density counterstream architectures.皮质高密度逆流架构。
Science. 2013 Nov 1;342(6158):1238406. doi: 10.1126/science.1238406.
8
Spatial embedding of structural similarity in the cerebral cortex.大脑皮层中结构相似性的空间嵌入
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16580-5. doi: 10.1073/pnas.1414153111. Epub 2014 Nov 3.
9
Multi-scale account of the network structure of macaque visual cortex.猴视觉皮层网络结构的多尺度描述。
Brain Struct Funct. 2018 Apr;223(3):1409-1435. doi: 10.1007/s00429-017-1554-4. Epub 2017 Nov 16.

引用本文的文献

本文引用的文献

4
CoCoMac 2.0 and the future of tract-tracing databases.CoCoMac 2.0 和轨迹追踪数据库的未来。
Front Neuroinform. 2012 Dec 27;6:30. doi: 10.3389/fninf.2012.00030. eCollection 2012.
5
Cortical circuits for the control of attention.注意力控制的皮质回路。
Curr Opin Neurobiol. 2013 Apr;23(2):216-22. doi: 10.1016/j.conb.2012.11.011. Epub 2012 Dec 22.
6
Behavioral architecture of the cortical sheet.皮质层的行为架构。
Curr Biol. 2012 Dec 18;22(24):R1033-8. doi: 10.1016/j.cub.2012.11.017.
10
High-cost, high-capacity backbone for global brain communication.用于全球大脑通信的高成本、高容量骨干网。
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11372-7. doi: 10.1073/pnas.1203593109. Epub 2012 Jun 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验