IFW Dresden, P.O. Box 270116, 01171 Dresden, Germany; TU Dresden, Institut für Werkstoffwissenschaft, 01062 Dresden, Germany.
Mater Sci Eng C Mater Biol Appl. 2013 Dec 1;33(8):4795-801. doi: 10.1016/j.msec.2013.07.042. Epub 2013 Aug 6.
The correlation between the microstructure and mechanical behavior during tensile loading of Ti68.8Nb13.6Al6.5Cu6Ni5.1 and Ti71.8Nb14.1Al6.7Cu4Ni3.4 alloys was investigated. The present alloys were prepared by the non-equilibrium processing applying relatively high cooling rates. The microstructure consists of a dendritic bcc β-Ti solid solution and fine intermetallic precipitates in the interdendritic region. The volume fraction of the intermetallic phases decreases significantly with slightly decreasing the Cu and Ni content. Consequently, the fracture mechanism in tension changes from cleavage to shear. This in turn strongly enhances the ductility of the alloy and as a result Ti71.8Nb14.1Al6.7Cu4Ni3.4 demonstrates a significant tensile ductility of about 14% combined with the high yield strength of above 820 MPa already in the as-cast state. The results demonstrate that the control of precipitates can significantly enhance the ductility and yet maintaining the high strength and the low Young's modulus of these alloys. The achieved high bio performance (ratio of strength to Young's modulus) is comparable (or even superior) with that of the recently developed Ti-based biomedical alloys.
研究了 Ti68.8Nb13.6Al6.5Cu6Ni5.1 和 Ti71.8Nb14.1Al6.7Cu4Ni3.4 合金在拉伸加载过程中的微观结构与力学性能之间的相关性。本研究采用相对较高的冷却速率进行非平衡处理来制备这些合金。其微观结构由枝晶状的 bccβ-Ti 固溶体和枝晶间的细小金属间化合物组成。随着 Cu 和 Ni 含量的略微降低,金属间化合物相的体积分数显著降低。因此,拉伸断裂机制从解理转变为剪切。这反过来又大大提高了合金的延展性,结果 Ti71.8Nb14.1Al6.7Cu4Ni3.4 表现出了约 14%的显著拉伸延展性,同时在铸态下具有超过 820 MPa 的高屈服强度。研究结果表明,通过控制析出相可以显著提高延展性,同时保持这些合金的高强度和低杨氏模量。所达到的高生物性能(强度与杨氏模量的比值)与最近开发的 Ti 基生物医学合金相当(甚至更优)。