School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts.
Biophys J. 2013 Oct 1;105(7):1562-8. doi: 10.1016/j.bpj.2013.08.037.
The mechanical properties of a cell determine many aspects of its behavior, and these mechanics are largely determined by the cytoskeleton. Although the contribution of actin filaments and microtubules to the mechanics of cells has been investigated in great detail, relatively little is known about the contribution of the third major cytoskeletal component, intermediate filaments (IFs). To determine the role of vimentin IF (VIF) in modulating intracellular and cortical mechanics, we carried out studies using mouse embryonic fibroblasts (mEFs) derived from wild-type or vimentin(-/-) mice. The VIFs contribute little to cortical stiffness but are critical for regulating intracellular mechanics. Active microrheology measurements using optical tweezers in living cells reveal that the presence of VIFs doubles the value of the cytoplasmic shear modulus to ∼10 Pa. The higher levels of cytoplasmic stiffness appear to stabilize organelles in the cell, as measured by tracking endogenous vesicle movement. These studies show that VIFs both increase the mechanical integrity of cells and localize intracellular components.
细胞的力学特性决定了其行为的许多方面,而这些力学特性在很大程度上取决于细胞骨架。尽管已经详细研究了肌动蛋白丝和微管对细胞力学的贡献,但对于中间丝(IFs)这第三大细胞骨架成分的贡献知之甚少。为了确定波形蛋白中间丝(VIF)在调节细胞内和皮质力学中的作用,我们使用来自野生型或波形蛋白(-/-)小鼠的胚胎成纤维细胞(mEFs)进行了研究。VIFs 对皮质硬度的贡献很小,但对调节细胞内力学至关重要。使用活细胞中的光镊进行的主动微流变学测量表明,VIF 的存在将细胞质剪切模量的数值增加了一倍,达到约 10 Pa。更高的细胞质硬度水平似乎通过跟踪内源性囊泡运动来稳定细胞中的细胞器。这些研究表明,VIF 既能提高细胞的机械完整性,又能定位细胞内成分。