Blob Anna, Ventzke David, Rölleke Ulrike, Nies Giacomo, Munk Axel, Schaedel Laura, Köster Sarah
Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
Institute for Mathematical Stochastics, University of Göttingen, Goldschmidtstraße 7, 37077 Göttingen, Germany.
Soft Matter. 2025 Jan 22;21(4):641-651. doi: 10.1039/d4sm01127a.
The eukaryotic cytoskeleton is an intricate network of three types of mechanically distinct biopolymers - actin filaments, microtubules and intermediate filaments (IFs). These filamentous networks determine essential cellular functions and properties. Among them, microtubules are important for intracellular transport and establishing cell polarity during migration. Despite their intrinsic stiffness, they exhibit characteristic bending and buckling in cells due to nonthermal forces acting on them. Interactions between cytoskeletal filaments have been found but are complex and diverse with respect to their effect on the mechanical behavior of the filaments and the architecture of networks. We systematically study how actin and vimentin IFs influence the network structure and local bending of microtubules by analyzing fluorescence microscopy images of mouse fibroblasts on protein micropatterns. Our automated analysis averages over large amounts of data to mitigate the effect of the considerable natural variance in biological cell data. We find that the radial orientation of microtubules in circular cells is robust and is established independently of vimentin and actin networks. Observing the local curvature of microtubules, we find highly similar average bending of microtubules in the entire cell regardless of the cytoskeletal surrounding. Small systematic differences cannot be attributed directly to vimentin and actin densities. Our results suggest that, on average, microtubules in unpolarized mouse fibroblasts are unexpectedly independent of the rest of the cytoskeleton in their global network structure and their local curvature.
真核细胞的细胞骨架是一个由三种机械特性不同的生物聚合物组成的复杂网络——肌动蛋白丝、微管和中间丝(IFs)。这些丝状网络决定了细胞的基本功能和特性。其中,微管对于细胞内运输以及在迁移过程中建立细胞极性很重要。尽管它们具有内在的刚度,但由于作用于它们的非热力,它们在细胞中表现出特征性的弯曲和屈曲。已经发现细胞骨架丝之间存在相互作用,但就其对丝的力学行为和网络结构的影响而言,这些相互作用是复杂多样的。我们通过分析蛋白质微图案上小鼠成纤维细胞的荧光显微镜图像,系统地研究了肌动蛋白和波形蛋白中间丝如何影响微管的网络结构和局部弯曲。我们的自动分析对大量数据进行平均,以减轻生物细胞数据中相当大的自然差异的影响。我们发现圆形细胞中微管的径向取向是稳健的,并且独立于波形蛋白和肌动蛋白网络而建立。观察微管的局部曲率,我们发现无论细胞骨架环境如何,整个细胞中微管的平均弯曲高度相似。微小的系统差异不能直接归因于波形蛋白和肌动蛋白的密度。我们的结果表明,平均而言,未极化小鼠成纤维细胞中的微管在其整体网络结构和局部曲率方面意外地独立于细胞骨架的其他部分。