Laboratory for Cell Dynamics Observation, Quantitative Biology Center, Riken, Furuedai, Suita, Osaka, Japan.
Biophys J. 2013 Oct 1;105(7):1635-42. doi: 10.1016/j.bpj.2013.08.036.
F1-ATPase is the water-soluble part of ATP synthase and is an ATP-driven rotary molecular motor that rotates the rotary shaft against the surrounding stator ring, hydrolyzing ATP. Although the mechanochemical coupling mechanism of F1-ATPase has been well studied, the molecular details of individual reaction steps remain unclear. In this study, we conducted a single-molecule rotation assay of F1 from thermophilic bacteria under various pressures from 0.1 to 140 MPa. Even at 140 MPa, F1 actively rotated with regular 120° steps in a counterclockwise direction, showing high conformational stability and retention of native properties. Rotational torque was also not affected. However, high hydrostatic pressure induced a distinct intervening pause at the ATP-binding angles during continuous rotation. The pause was observed under both ATP-limiting and ATP-saturating conditions, suggesting that F1 has two pressure-sensitive reactions, one of which is evidently ATP binding. The rotation assay using a mutant F1(βE190D) suggested that the other pressure-sensitive reaction occurs at the same angle at which ATP binding occurs. The activation volumes were determined from the pressure dependence of the rate constants to be +100 Å(3) and +88 Å(3) for ATP binding and the other pressure-sensitive reaction, respectively. These results are discussed in relation to recent single-molecule studies of F1 and pressure-induced protein unfolding.
F1-ATPase 是 ATP 合酶的水溶性部分,是一种 ATP 驱动的旋转分子马达,它沿周围定子环旋转旋转轴,水解 ATP。尽管 F1-ATPase 的机械化学偶联机制已经得到了很好的研究,但单个反应步骤的分子细节仍不清楚。在这项研究中,我们在 0.1 至 140 MPa 的各种压力下对来自嗜热细菌的 F1 进行了单分子旋转测定。即使在 140 MPa 下,F1 也能以逆时针方向的规则 120°步积极旋转,表现出高构象稳定性和保留天然特性。旋转扭矩也没有受到影响。然而,高压静水压力在连续旋转过程中在 ATP 结合角度处引起明显的中间停顿。在 ATP 限制和 ATP 饱和条件下都观察到了停顿,这表明 F1 有两个对压力敏感的反应,其中一个显然是 ATP 结合。使用突变 F1(βE190D)的旋转测定表明,另一个对压力敏感的反应发生在与 ATP 结合相同的角度。从速率常数对压力的依赖性确定的激活体积分别为+100 Å(3)和+88 Å(3),分别用于 ATP 结合和另一个对压力敏感的反应。这些结果与最近关于 F1 的单分子研究和压力诱导的蛋白质变性进行了讨论。