Mohan Swetha, Timbers Tiffany A, Kennedy Julie, Blacque Oliver E, Leroux Michel R
Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
Curr Biol. 2013 Oct 21;23(20):2016-22. doi: 10.1016/j.cub.2013.08.033. Epub 2013 Oct 3.
Primary cilia are microtubule-based sensory organelles whose structures and functions must be actively maintained throughout animal lifespan to support signal transduction pathways essential for development and physiological processes such as vision and olfaction [1]. Remarkably, few cellular components aside from the intraflagellar transport (IFT) machinery are implicated in ciliary maintenance [2]. Rootletin, an evolutionarily conserved protein found as prominent striated rootlets or a nonfilamentous form, both of which are associated with cilium-anchoring basal bodies, represents a likely candidate given its well-known role in preventing ciliary photoreceptor degeneration in a mouse model [3, 4]. Whether rootletin is universally required for maintaining ciliary integrity, and if so, by what mechanism, remains unresolved. Here, we demonstrate that the gene disrupted in the previously isolated C. elegans chemosensory mutant che-10 encodes a rootletin ortholog that localizes proximally and distally to basal bodies of cilia harboring or lacking conspicuous rootlets. In vivo analyses reveal that CHE-10/rootletin maintains ciliary integrity partly by modulating the assembly, motility, and flux of IFT particles, which are critical for axoneme length control. Surprisingly, CHE-10/rootletin is also essential for stabilizing ciliary transition zones and basal bodies, roles not ascribed to IFT. Unifying these findings, we provide evidence that the underlying molecular defects in the che-10 mutant stem from disrupted organization/function of the periciliary membrane, affecting the efficient delivery of basal body-associated and ciliary components and resulting in cilium degeneration. Together, our cloning and functional analyses of C. elegans che-10 provide the first mechanistic insights into how filamentous and nonfilamentous forms of rootletin play essential roles in maintaining ciliary function in metazoans.
初级纤毛是以微管为基础的感觉细胞器,其结构和功能在动物整个生命周期中都必须得到积极维持,以支持对发育和视觉、嗅觉等生理过程至关重要的信号转导途径[1]。值得注意的是,除了鞭毛内运输(IFT)机制外,很少有细胞成分参与纤毛的维持[2]。根蛋白是一种进化上保守的蛋白质,以突出的横纹小根或非丝状形式存在,两者都与纤毛锚定的基体相关,鉴于其在小鼠模型中预防纤毛光感受器退化的众所周知的作用,它是一个可能的候选者[3,4]。根蛋白是否普遍是维持纤毛完整性所必需的,如果是,其机制是什么,仍未得到解决。在这里,我们证明,在先前分离的秀丽隐杆线虫化学感受突变体che-10中被破坏的基因编码一种根蛋白直系同源物,该直系同源物定位于有或没有明显小根的纤毛基体的近端和远端。体内分析表明,CHE-10/根蛋白部分通过调节IFT颗粒的组装、运动性和通量来维持纤毛完整性,而IFT颗粒对轴丝长度控制至关重要。令人惊讶的是,CHE-10/根蛋白对于稳定纤毛过渡区和基体也至关重要,这些作用并非IFT所具有。综合这些发现,我们提供证据表明,che-10突变体潜在的分子缺陷源于周纤毛膜的组织/功能紊乱,影响了基体相关和纤毛成分的有效递送,导致纤毛退化。总之,我们对秀丽隐杆线虫che-10的克隆和功能分析首次提供了关于丝状和非丝状形式的根蛋白如何在维持后生动物纤毛功能中发挥重要作用的机制见解。