Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
J Bacteriol. 2013 Dec;195(24):5469-78. doi: 10.1128/JB.00715-13. Epub 2013 Oct 4.
The capsular polysaccharide (CPS) is essential for Streptococcus pneumoniae virulence. Its synthesis requires multiple enzymes, and defects that block completion of the pathway can be lethal in the absence of secondary suppressor mutations. In this study, we examined the functions of three capsular glycosyltransferases (Cps2F, Cps2G, and Cps2I) involved in serotype 2 CPS synthesis, whose deletions select for secondary mutations. We demonstrate that Cps2F is a rhamnosyltransferase that catalyzes addition of the third and fourth sugars in the capsule repeat unit, while Cps2G adds the fifth sugar (glucose). Addition of the terminal residue (glucuronic acid) could not be detected; however, activities of the other glycosyltransferases together with bioinformatic analyses suggest that this step is mediated by Cps2I. Most of the secondary suppressor mutations resulting from loss of these enzymes occur in cps2E, the gene encoding the initiating glycosyltransferase. Examination of the 69 S. pneumoniae serotypes containing Cps2E homologues yielded a consensus amino acid sequence for this protein and demonstrated that there is a highly significant association between the residues that are 100% conserved and those altered by suppressor mutations. Cps2E contains an extracytoplasmic loop whose function is unknown. Among our collection of mutants, six contained missense mutations affecting amino acids in the extracytoplasmic loop. These residues are highly conserved among S. pneumoniae Cps2E homologues, and mutations therein severely reduced CPS synthesis and Cps2E activity. The critical functions of these amino acids suggest a role for the Cps2E extracytoplasmic loop in initiation, and possibly regulation, of capsule synthesis.
荚膜多糖 (CPS) 是肺炎链球菌毒力所必需的。其合成需要多种酶,并且在没有次要抑制突变的情况下,阻断途径完成的缺陷可能是致命的。在这项研究中,我们研究了参与血清型 2 CPS 合成的三个荚膜糖基转移酶 (Cps2F、Cps2G 和 Cps2I) 的功能,它们的缺失会选择次要突变。我们证明 Cps2F 是一种鼠李糖基转移酶,可催化荚膜重复单元中第三个和第四个糖的添加,而 Cps2G 添加第五个糖(葡萄糖)。不能检测到末端残基(葡萄糖醛酸)的添加;然而,其他糖基转移酶的活性和生物信息学分析表明,这一步骤由 Cps2I 介导。这些酶缺失产生的大多数次要抑制突变发生在 cps2E 基因中,该基因编码起始糖基转移酶。对含有 Cps2E 同源物的 69 种肺炎链球菌血清型的检查得到了该蛋白的保守氨基酸序列,并证明在 100%保守的残基和被抑制突变改变的残基之间存在高度显著的关联。Cps2E 含有一个细胞外环,其功能未知。在我们收集的突变体中,有六个含有影响细胞外环中氨基酸的错义突变。这些残基在肺炎链球菌 Cps2E 同源物中高度保守,其中的突变严重降低了 CPS 合成和 Cps2E 活性。这些氨基酸的关键功能表明 Cps2E 细胞外环在启动和可能的调节荚膜合成中发挥作用。