Suppr超能文献

运用交叉性理论和 CART 分析探索心理健康服务使用的社会决定因素。

Exploring the social determinants of mental health service use using intersectionality theory and CART analysis.

机构信息

Departments of Family Medicine, Psychiatry & Behavioural Neurosciences, and Kinesiology, McMaster University, , Hamilton, Ontario, Canada.

出版信息

J Epidemiol Community Health. 2014 Feb;68(2):145-50. doi: 10.1136/jech-2013-203120. Epub 2013 Oct 4.

Abstract

BACKGROUND

Fewer than half of individuals with a mental disorder seek formal care in a given year. Much research has been conducted on the factors that influence service use in this population, but the methods generally used cannot easily identify the complex interactions that are thought to exist. In this paper, we examine predictors of subsequent service use among respondents to a population health survey who met criteria for a past-year mood, anxiety or substance-related disorder.

METHODS

To determine service use, we use an administrative database including all physician consultations in the period of interest. To identify predictors, we use classification tree (CART) analysis, a data mining technique with the ability to identify unsuspected interactions. We compare results to those from logistic regression models.

RESULTS

We identify 1213 individuals with past-year disorder. In the year after the survey, 24% (n=312) of these had a mental health-related physician consultation. Logistic regression revealed that age, sex and marital status predicted service use. CART analysis yielded a set of rules based on age, sex, marital status and income adequacy, with marital status playing a role among men and by income adequacy important among women. CART analysis proved moderately effective overall, with agreement of 60%, sensitivity of 82% and specificity of 53%.

CONCLUSION

Results highlight the potential of data-mining techniques to uncover complex interactions, and offer support to the view that the intersection of multiple statuses influence health and behaviour in ways that are difficult to identify with conventional statistics. The disadvantages of these methods are also discussed.

摘要

背景

在特定年份,只有不到一半的精神障碍患者寻求正规治疗。大量研究已经针对影响该人群服务利用的因素展开,但通常使用的方法无法轻易识别出被认为存在的复杂相互作用。在本文中,我们研究了符合过去一年心境、焦虑或物质相关障碍标准的人群健康调查应答者中,随后服务利用的预测因素。

方法

为了确定服务利用情况,我们使用了一个包含所有感兴趣时间段内医生就诊的行政数据库。为了识别预测因素,我们使用了分类树 (CART) 分析,这是一种具有识别潜在交互作用能力的数据挖掘技术。我们将结果与逻辑回归模型的结果进行了比较。

结果

我们确定了 1213 名过去一年有障碍的个体。在调查后的一年中,其中 24%(n=312)有心理健康相关的医生就诊。逻辑回归显示,年龄、性别和婚姻状况预测了服务利用情况。CART 分析得出了一组基于年龄、性别、婚姻状况和收入充足性的规则,其中婚姻状况对男性有影响,而收入充足性对女性很重要。CART 分析总体上证明是有效的,一致性为 60%,敏感性为 82%,特异性为 53%。

结论

结果突出了数据挖掘技术揭示复杂相互作用的潜力,并为多种状态的交集以难以用传统统计学方法识别的方式影响健康和行为的观点提供了支持。还讨论了这些方法的缺点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验