Javed Zulqarnain, Kundi Harun, Chang Ryan, Titus Anoop, Arshad Hassaan
Center for Cardiovascular Computational Health and Precision Medicine (C3-PH), Houston Methodist, Houston, TX, 77030, USA.
Division of Cardiovascular Prevention and Wellness, Houston Methodist DeBakey Heart and Vascular Center, Houston, TX, 77030, USA.
Curr Atheroscler Rep. 2023 Dec;25(12):1059-1068. doi: 10.1007/s11883-023-01173-4. Epub 2023 Dec 4.
To review current evidence, discuss key knowledge gaps and identify opportunities for development, validation and application of polysocial risk scores (pSRS) for cardiovascular disease (CVD) risk prediction and population cardiovascular health management.
Limited existing evidence suggests that pSRS are promising tools to capture cumulative social determinants of health (SDOH) burden and improve CVD risk prediction beyond traditional risk factors. However, available tools lack generalizability, are cross-sectional in nature or do not assess social risk holistically across SDOH domains. Available SDOH and clinical risk factor data in large population-based databases are under-utilized for pSRS development. Recent advances in machine learning and artificial intelligence present unprecedented opportunities for SDOH integration and assessment in real-world data, with implications for pSRS development and validation for both clinical and healthcare utilization outcomes. pSRS presents unique opportunities to potentially improve traditional "clinical" models of CVD risk prediction. Future efforts should focus on fully utilizing available SDOH data in large epidemiological databases, testing pSRS efficacy in diverse population subgroups, and integrating pSRS into real-world clinical decision support systems to inform clinical care and advance cardiovascular health equity.
回顾当前证据,讨论关键知识空白,并确定多社会风险评分(pSRS)在心血管疾病(CVD)风险预测和人群心血管健康管理方面的开发、验证及应用机会。
现有有限证据表明,pSRS是捕捉累积健康社会决定因素(SDOH)负担并超越传统风险因素改善CVD风险预测的有前景的工具。然而,现有工具缺乏普遍性,本质上是横断面的,或者没有跨SDOH领域全面评估社会风险。大型基于人群的数据库中可用的SDOH和临床风险因素数据在pSRS开发中未得到充分利用。机器学习和人工智能的最新进展为在真实世界数据中整合和评估SDOH带来了前所未有的机会,对临床和医疗利用结果的pSRS开发和验证具有重要意义。pSRS为潜在改进传统的CVD风险预测“临床”模型提供了独特机会。未来的努力应集中在充分利用大型流行病学数据库中可用的SDOH数据,在不同人群亚组中测试pSRS的有效性,并将pSRS整合到真实世界临床决策支持系统中,以指导临床护理并促进心血管健康公平。