Suppr超能文献

使用正则化回归从基因表达和miRNA-基因网络中识别癌症特异性功能相关的miRNA。

Identifying cancer specific functionally relevant miRNAs from gene expression and miRNA-to-gene networks using regularized regression.

作者信息

Mezlini Aziz M, Wang Bo, Deshwar Amit, Morris Quaid, Goldenberg Anna

机构信息

Department of Computer Science, University of Toronto, Toronto, Ontario, Canada ; Genetics and Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada.

出版信息

PLoS One. 2013 Oct 2;8(10):e73168. doi: 10.1371/journal.pone.0073168. eCollection 2013.

Abstract

Identifying microRNA signatures for the different types and subtypes of cancer can result in improved detection, characterization and understanding of cancer and move us towards more personalized treatment strategies. However, using microRNA's differential expression (tumour versus normal) to determine these signatures may lead to inaccurate predictions and low interpretability because of the noisy nature of miRNA expression data. We present a method for the selection of biologically active microRNAs using gene expression data and microRNA-to-gene interaction network. Our method is based on a linear regression with an elastic net regularization. Our simulations show that, with our method, the active miRNAs can be detected with high accuracy and our approach is robust to high levels of noise and missing information. Furthermore, our results on real datasets for glioblastoma and prostate cancer are confirmed by microRNA expression measurements. Our method leads to the selection of potentially functionally important microRNAs. The associations of some of our identified miRNAs with cancer mechanisms are already confirmed in other studies (hypoxia related hsa-mir-210 and apoptosis-related hsa-mir-296-5p). We have also identified additional miRNAs that were not previously studied in the context of cancer but are coherently predicted as active by our method and may warrant further investigation. The code is available in Matlab and R and can be downloaded on http://www.cs.toronto.edu/goldenberg/Anna_Goldenberg/Current_Research.html.

摘要

识别不同类型和亚型癌症的微小RNA特征,可改善癌症的检测、特征描述和理解,并推动我们朝着更个性化的治疗策略发展。然而,由于微小RNA表达数据的噪声特性,利用微小RNA的差异表达(肿瘤与正常组织)来确定这些特征可能会导致预测不准确和解释性低。我们提出了一种利用基因表达数据和微小RNA - 基因相互作用网络来选择具有生物活性的微小RNA的方法。我们的方法基于带有弹性网络正则化的线性回归。我们的模拟表明,使用我们的方法,可以高精度地检测出活性微小RNA,并且我们的方法对高水平的噪声和缺失信息具有鲁棒性。此外,我们在胶质母细胞瘤和前列腺癌真实数据集上的结果通过微小RNA表达测量得到了证实。我们的方法能够筛选出潜在具有功能重要性的微小RNA。我们鉴定出的一些微小RNA与癌症机制的关联在其他研究中已得到证实(与缺氧相关的hsa - mir - 210和与凋亡相关的hsa - mir - 296 - 5p)。我们还鉴定出了其他一些以前未在癌症背景下研究过的微小RNA,但我们的方法一致预测它们具有活性,可能值得进一步研究。代码以Matlab和R语言提供,可从http://www.cs.toronto.edu/goldenberg/Anna_Goldenberg/Current_Research.html下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e415/3788788/428f27e3d8de/pone.0073168.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验