Suppr超能文献

基于水平集的胸部 CT 肺结节分割新方法。

A novel approach for lung nodules segmentation in chest CT using level sets.

出版信息

IEEE Trans Image Process. 2013 Dec;22(12):5202-13. doi: 10.1109/TIP.2013.2282899.

Abstract

A new variational level set approach is proposed for lung nodule segmentation in lung CT scans. A general lung nodule shape model is proposed using implicit spaces as a signed distance function. The shape model is fused with the image intensity statistical information in a variational segmentation framework. The nodule shape model is mapped to the image domain by a global transformation that includes inhomogeneous scales, rotation, and translation parameters. A matching criteria between the shape model and the image implicit representations is employed to handle the alignment process. Transformation parameters evolve through gradient descent optimization to handle the shape alignment process and hence mark the boundaries of the nodule “head.” The embedding process takes into consideration the image intensity as well as prior shape information. A nonparametric density estimation approach is employed to handle the statistical intensity representation of the nodule and background regions. The proposed technique does not depend on nodule type or location. Exhaustive experimental and validation results are demonstrated on 742 nodules obtained from four different CT lung databases, illustrating the robustness of the approach.

摘要

提出了一种新的变分水平集方法,用于肺部 CT 扫描中的肺结节分割。使用隐式空间作为符号距离函数,提出了一种通用的肺结节形状模型。形状模型在变分分割框架中与图像强度统计信息融合。通过包含不均匀比例、旋转和平移参数的全局变换,将结节形状模型映射到图像域。使用形状模型和图像隐式表示之间的匹配标准来处理对齐过程。通过梯度下降优化来演化变换参数,以处理形状对齐过程,并因此标记结节“头部”的边界。嵌入过程考虑了图像强度以及先验形状信息。采用非参数密度估计方法来处理结节和背景区域的统计强度表示。该技术不依赖于结节类型或位置。在来自四个不同 CT 肺部数据库的 742 个结节上进行了广泛的实验和验证结果,证明了该方法的鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验