Farag Aly A, El-Baz Ayman, Gimelfarb Georgy, El-Ghar Mohamed Abou, Eldiasty Tarek
CVIP Lab., University of Louisville, Louisville, KY 40292, USA.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):720-8. doi: 10.1007/11566465_89.
Automatic diagnosis of lung nodules for early detection of lung cancer is the goal of a number of screening studies worldwide. With the improvements in resolution and scanning time of low dose chest CT scanners, nodule detection and identification is continuously improving. In this paper we describe the latest improvements introduced by our group in automatic detection of lung nodules. We introduce a new template for nodule detection using level sets which describes various physical nodules irrespective of shape, size and distribution of gray levels. The template parameters are estimated automatically from the segmented data (after the first two steps of our CAD system for automatic nodule detection) - no a priori learning of the parameters density function is needed. We show quantitatively that this template modeling approach drastically reduces the number of false positives in the nodule detection (the third step of our CAD system for automatic nodule detection), thus improving the overall accuracy of CAD systems. We compare the performance of this approach with other approaches in the literature and with respect to human experts. The impact of the new template model includes: 1) flexibility with respect to nodule topology - thus various nodules can be detected simultaneously by the same technique; 2) automatic parameter estimation of the nodule models using the gray level information of the segmented data; and 3) the ability to provide exhaustive search for all the possible nodules in the scan without excessive processing time - this provides an enhanced accuracy of the CAD system without increase in the overall diagnosis time.
肺癌早期检测中肺结节的自动诊断是全球众多筛查研究的目标。随着低剂量胸部CT扫描仪分辨率和扫描时间的提高,结节检测和识别不断改进。在本文中,我们描述了我们团队在肺结节自动检测方面的最新改进。我们引入了一种使用水平集的结节检测新模板,该模板描述了各种物理结节,而不考虑其形状、大小和灰度分布。模板参数是根据分割数据(在我们用于自动结节检测的CAD系统的前两步之后)自动估计的,无需对参数密度函数进行先验学习。我们定量地表明,这种模板建模方法极大地减少了结节检测(我们用于自动结节检测的CAD系统的第三步)中的假阳性数量,从而提高了CAD系统的整体准确性。我们将这种方法的性能与文献中的其他方法以及人类专家的性能进行了比较。新模板模型的影响包括:1)在结节拓扑方面具有灵活性——因此可以通过相同技术同时检测各种结节;2)利用分割数据的灰度信息自动估计结节模型的参数;3)能够在不过度处理时间的情况下对扫描中的所有可能结节进行详尽搜索——这在不增加整体诊断时间的情况下提高了CAD系统的准确性。