Department of Software Convergence, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul 01797, Republic of Korea.
Department of Software Convergence, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul 01797, Republic of Korea.
Comput Biol Med. 2018 Jan 1;92:128-138. doi: 10.1016/j.compbiomed.2017.11.013. Epub 2017 Nov 20.
We propose a ground-glass nodule (GGN) segmentation method that can separate solid component and ground-glass opacity (GGO) using an asymmetric multi-phase deformable model in chest CT images. First, initial solid component and GGO were extracted using intensity-based segmentation with histogram modeling. Second, the initial extracted regions were refined using an asymmetric multi-phase deformable model with modified energy functional and intensity-constrained averaging function. Finally, vessel-like structures are removed based on multi-scale shape analysis. In experiments, the segmentation accuracy of the entire GGN was evaluated using datasets from SNUH and LIDC/IDRI. The average DSC values of Seoul National University Hospital (SNUH) and Lung Image Database Consortium and Image Database Resource Initiative (LIDC/IDRI) were 0.85 ± 0.05 and 0.78 ± 0.07, respectively. The Pearson's correlation coefficient (r) between segmented volumes by the proposed method and manual segmentation was evaluated using SNUH dataset. The r of solid component, GGO, and entire GGN were 0.931, 0.875 and 0.907. Our experimental results show that the proposed method improves segmentation accuracy by applying the proposed asymmetric multiphase deformable model and pulmonary vessel removal.
我们提出了一种肺磨玻璃结节(GGN)分割方法,该方法可以使用胸部 CT 图像中的不对称多相变形模型来分离实性成分和磨玻璃不透明度(GGO)。首先,使用基于强度的分割和直方图建模提取初始实性成分和 GGO。其次,使用带有修改的能量函数和强度约束平均函数的不对称多相变形模型来细化初始提取区域。最后,基于多尺度形状分析去除管状结构。在实验中,使用来自 SNUH 和 LIDC/IDRI 的数据集评估整个 GGN 的分割准确性。首尔国立大学医院(SNUH)和肺图像数据库联盟和图像数据库资源倡议(LIDC/IDRI)的平均 DSC 值分别为 0.85±0.05 和 0.78±0.07。使用 SNUH 数据集评估了所提出方法的分割体积与手动分割之间的 Pearson 相关系数(r)。实性成分、GGO 和整个 GGN 的 r 值分别为 0.931、0.875 和 0.907。我们的实验结果表明,通过应用所提出的不对称多相变形模型和肺血管去除,该方法可以提高分割准确性。