Suppr超能文献

葡萄糖传感器误差建模。

Modeling the glucose sensor error.

出版信息

IEEE Trans Biomed Eng. 2014 Mar;61(3):620-9. doi: 10.1109/TBME.2013.2284023. Epub 2013 Sep 30.

Abstract

Continuous glucose monitoring (CGM) sensors are portable devices, employed in the treatment of diabetes, able to measure glucose concentration in the interstitium almost continuously for several days. However, CGM sensors are not as accurate as standard blood glucose (BG) meters. Studies comparing CGM versus BG demonstrated that CGM is affected by distortion due to diffusion processes and by time-varying systematic under/overestimations due to calibrations and sensor drifts. In addition, measurement noise is also present in CGM data. A reliable model of the different components of CGM inaccuracy with respect to BG (briefly, "sensor error") is important in several applications, e.g., design of optimal digital filters for denoising of CGM data, real-time glucose prediction, insulin dosing, and artificial pancreas control algorithms. The aim of this paper is to propose an approach to describe CGM sensor error by exploiting n multiple simultaneous CGM recordings. The model of sensor error description includes a model of blood-to-interstitial glucose diffusion process, a linear time-varying model to account for calibration and sensor drift-in-time, and an autoregressive model to describe the additive measurement noise. Model orders and parameters are identified from the n simultaneous CGM sensor recordings and BG references. While the model is applicable to any CGM sensor, here, it is used on a database of 36 datasets of type 1 diabetic adults in which n = 4 Dexcom SEVEN Plus CGM time series and frequent BG references were available simultaneously. Results demonstrates that multiple simultaneous sensor data and proper modeling allow dissecting the sensor error into its different components, distinguishing those related to physiology from those related to technology.

摘要

连续血糖监测(CGM)传感器是一种便携式设备,用于治疗糖尿病,能够在几天内几乎连续测量间质中的葡萄糖浓度。然而,CGM 传感器不如标准血糖仪(BG)准确。比较 CGM 与 BG 的研究表明,CGM 受到扩散过程引起的失真以及由于校准和传感器漂移引起的随时间变化的系统低估/高估的影响。此外,CGM 数据中也存在测量噪声。一个可靠的 CGM 相对于 BG 的不同不准确成分(简称“传感器误差”)模型对于许多应用都很重要,例如用于 CGM 数据去噪的最佳数字滤波器设计、实时血糖预测、胰岛素给药和人工胰腺控制算法。本文的目的是提出一种利用多个同时 CGM 记录来描述 CGM 传感器误差的方法。传感器误差描述模型包括血液到间质葡萄糖扩散过程的模型、用于校准和传感器随时间漂移的线性时变模型,以及用于描述附加测量噪声的自回归模型。模型阶数和参数由 n 个同时 CGM 传感器记录和 BG 参考值确定。虽然该模型适用于任何 CGM 传感器,但在这里,它被用于一个 36 组 1 型糖尿病成人数据集的数据库,其中 n = 4 Dexcom SEVEN Plus CGM 时间序列和频繁的 BG 参考值同时可用。结果表明,多个同时的传感器数据和适当的建模允许将传感器误差分解为其不同的成分,区分与生理学相关的成分和与技术相关的成分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验