Suppr超能文献

模拟工厂校准的连续血糖监测传感器的误差:应用于德康G6传感器数据。

Modeling the error of factory-calibrated continuous glucose monitoring sensors: application to Dexcom G6 sensor data.

作者信息

Vettoretti Martina, Favero Simone Del, Sparacino Giovanni, Facchinetti Andrea

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:750-753. doi: 10.1109/EMBC.2019.8856790.

Abstract

Minimally-invasive continuous glucose monitoring (CGM) sensors are used in diabetes therapy to monitor interstitial glucose (IG) concentration almost continuously (e.g. every 5 min) and detect/predict dangerous hypo/hyperglycemic episodes. When compared with frequent blood glucose (BG) concentration references, CGM measurements are unavoidably affected by error. Models of the CGM error can be important in several applications, e.g. for testing in simulation the safety and effectiveness of CGM-based artificial pancreas algorithms. In this work, we model the error of the Dexcom G6, a CGM sensor that recently entered the market and does not require in vivo calibrations. The dataset includes CGM and BG data collected in 11 subjects wearing two Dexcom G6 sensors in parallel. The model is derived applying a methodology to dissect and model 3 main CGM error components: BG-to-IG kinetics, calibration error and measurement noise. An aspect of novelty of the method is its capability of handling factory-calibrated CGM sensor data. Results of model identification show that the time-variability of sensor calibration error during the sensor lifetime (10 days) can be well represented by a regression model with time-variant parameters described by 2-order polynomials in time.

摘要

微创连续血糖监测(CGM)传感器用于糖尿病治疗,以几乎连续地(例如每5分钟)监测组织间液葡萄糖(IG)浓度,并检测/预测危险的低血糖/高血糖事件。与频繁的血糖(BG)浓度参考值相比,CGM测量不可避免地会受到误差影响。CGM误差模型在多个应用中可能很重要,例如用于在模拟中测试基于CGM的人工胰腺算法的安全性和有效性。在这项工作中,我们对Dexcom G6的误差进行建模,Dexcom G6是一种最近进入市场且无需进行体内校准的CGM传感器。数据集包括11名受试者同时佩戴两个Dexcom G6传感器时收集的CGM和BG数据。该模型是通过应用一种方法推导得出的,该方法用于剖析和建模3个主要的CGM误差成分:BG到IG的动力学、校准误差和测量噪声。该方法的一个新颖之处在于其处理工厂校准的CGM传感器数据的能力。模型识别结果表明,传感器寿命(10天)期间传感器校准误差的时间变异性可以用一个回归模型很好地表示,该回归模型的时变参数由时间的二阶多项式描述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验