Huang Weimin, Li Ning, Lin Ziping, Huang Guang-Bin, Zong Weiwei, Zhou Jiayin, Duan Yuping
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:3662-5. doi: 10.1109/EMBC.2013.6610337.
This paper presents an approach to detection and segmentation of liver tumors in 3D computed tomography (CT) images. The automatic detection of tumor can be formulized as novelty detection or two-class classification issue. The method can also be used for tumor segmentation, where each voxel is to be assigned with a correct label, either a tumor class or nontumor class. A voxel is represented with a rich feature vector that distinguishes itself from voxels in different classes. A fast learning algorithm Extreme Learning Machine (ELM) is trained as a voxel classifier. In automatic liver tumor detection, we propose and show that ELM can be trained as a one-class classifier with only healthy liver samples in training. It results in a method of tumor detection based on novelty detection. We compare it with two-class ELM. To extract the boundary of a tumor, we adopt the semi-automatic approach by randomly selecting samples in 3D space within a limited region of interest (ROI) for classifier training. Our approach is validated on a group of patients' CT data and the experiment shows good detection and encouraging segmentation results.
本文提出了一种在三维计算机断层扫描(CT)图像中检测和分割肝脏肿瘤的方法。肿瘤的自动检测可被公式化为异常检测或二类分类问题。该方法也可用于肿瘤分割,其中每个体素都要被赋予一个正确的标签,要么是肿瘤类别,要么是非肿瘤类别。一个体素由一个丰富的特征向量表示,该特征向量将其自身与不同类别的体素区分开来。一种快速学习算法极限学习机(ELM)被训练为体素分类器。在肝脏肿瘤自动检测中,我们提出并表明ELM可以仅使用训练中的健康肝脏样本训练为一类分类器。这产生了一种基于异常检测的肿瘤检测方法。我们将其与二类ELM进行比较。为了提取肿瘤边界,我们采用半自动方法,通过在有限感兴趣区域(ROI)内的三维空间中随机选择样本进行分类器训练。我们的方法在一组患者的CT数据上得到验证,实验显示出良好的检测结果和令人鼓舞的分割结果。