Suppr超能文献

噪声生物信号中的异常检测。

Abnormality detection in noisy biosignals.

作者信息

Kaya Emine Merve, Elhilali Mounya

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:3949-52. doi: 10.1109/EMBC.2013.6610409.

Abstract

Although great strides have been achieved in computer-aided diagnosis (CAD) research, a major remaining problem is the ability to perform well under the presence of significant noise. In this work, we propose a mechanism to find instances of potential interest in time series for further analysis. Adaptive Kalman filters are employed in parallel among different feature axes. Lung sounds recorded in noisy conditions are used as an example application, with spectro-temporal feature extraction to capture the complex variabilities in sound. We demonstrate that both disease indicators and distortion events can be detected, reducing long time series signals into a sparse set of relevant events.

摘要

尽管计算机辅助诊断(CAD)研究已经取得了长足的进步,但一个主要的遗留问题是在存在大量噪声的情况下仍能良好运行的能力。在这项工作中,我们提出了一种机制,用于在时间序列中找到潜在感兴趣的实例,以便进行进一步分析。自适应卡尔曼滤波器在不同特征轴之间并行使用。以在嘈杂条件下记录的肺音作为示例应用,通过频谱-时间特征提取来捕捉声音中的复杂变化。我们证明,疾病指标和失真事件都可以被检测到,将长时间序列信号简化为一组稀疏的相关事件。

相似文献

1
Abnormality detection in noisy biosignals.噪声生物信号中的异常检测。
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:3949-52. doi: 10.1109/EMBC.2013.6610409.
3
[Normal and Adventitious Breath Sounds].[正常呼吸音与附加呼吸音]
Pneumologie. 2016 Jun;70(6):397-404. doi: 10.1055/s-0042-106155. Epub 2016 May 13.
9
A multiresolution analysis for detection of abnormal lung sounds.一种用于检测异常肺音的多分辨率分析方法。
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:3139-42. doi: 10.1109/EMBC.2012.6346630.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验