Dept. of ECE, Ngee Ann Polytechnic, Singapore.
Technol Cancer Res Treat. 2011 Aug;10(4):371-80. doi: 10.7785/tcrt.2012.500214.
Ultrasound has great potential to aid in the differential diagnosis of malignant and benign thyroid lesions, but interpretative pitfalls exist and the accuracy is still poor. To overcome these difficulties, we developed and analyzed a range of knowledge representation techniques, which are a class of ThyroScan™ algorithms from Global Biomedical Technologies Inc., California, USA, for automatic classification of benign and malignant thyroid lesions. The analysis is based on data obtained from twenty nodules (ten benign and ten malignant) taken from 3D contrast-enhanced ultrasound images. Fine needle aspiration biopsy and histology confirmed malignancy. Discrete Wavelet Transform (DWT) and texture algorithms are used to extract relevant features from the thyroid images. The resulting feature vectors are fed to three different classifiers: K-Nearest Neighbor (K-NN), Probabilistic Neural Network (PNN), and Decision Tree (DeTr). The performance of these classifiers is compared using Receiver Operating Characteristic (ROC) curves. Our results show that combination of DWT and texture features coupled with K-NN resulted in good performance measures with the area of under the ROC curve of 0.987, a classification accuracy of 98.9%, a sensitivity of 98%, and a specificity of 99.8%. Finally, we have proposed a novel integrated index called Thyroid Malignancy Index (TMI), which is made up of texture features, to diagnose benign or malignant nodules using just one index. We hope that this TMI will help clinicians in a more objective detection of benign and malignant thyroid lesions.
超声在辅助鉴别甲状腺良恶性病变方面具有很大的潜力,但存在解释上的陷阱,准确性仍然较差。为了克服这些困难,我们开发并分析了一系列知识表示技术,这些技术是来自美国加利福尼亚全球生物医学技术公司的 ThyroScan™算法的一个类别,用于自动分类甲状腺良恶性病变。分析基于从 3D 对比增强超声图像中获取的二十个结节(十个良性和十个恶性)的数据。细针抽吸活检和组织学证实了恶性肿瘤。离散小波变换(DWT)和纹理算法用于从甲状腺图像中提取相关特征。所得特征向量被馈送到三个不同的分类器:K-最近邻(K-NN)、概率神经网络(PNN)和决策树(DeTr)。使用接收者操作特征(ROC)曲线比较这些分类器的性能。我们的结果表明,DWT 和纹理特征的组合以及 K-NN 的组合导致了良好的性能指标,ROC 曲线下的面积为 0.987,分类准确率为 98.9%,灵敏度为 98%,特异性为 99.8%。最后,我们提出了一种新的综合指标,称为甲状腺恶性指数(TMI),它由纹理特征组成,用于使用一个指标诊断良性或恶性结节。我们希望这个 TMI 将帮助临床医生更客观地检测甲状腺良恶性病变。