Huang Gan, Xiao Ping, Hu Li, Hung Yeung Sam, Zhang Zhiguo
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:4207-10. doi: 10.1109/EMBC.2013.6610473.
Pain is a highly subjective experience, and the availability of an objective assessment of pain perception would be of great importance for both basic and clinical applications. The objective of the present study is to develop a novel approach to extract pain-related features from single-trial laser-evoked potentials (LEPs) for classification of pain perception. The single-trial LEP feature extraction approach combines a spatial filtering using common spatial pattern (CSP) and a multiple linear regression (MLR). The CSP method is effective in separating laser-evoked EEG response from ongoing EEG activity, while MLR is capable of automatically estimating the amplitudes and latencies of N2 and P2 from single-trial LEP waveforms. The extracted single-trial LEP features are used in a Naïve Bayes classifier to classify different levels of pain perceived by the subjects. The experimental results show that the proposed single-trial LEP feature extraction approach can effectively extract pain-related LEP features for achieving high classification accuracy.
疼痛是一种高度主观的体验,而对疼痛感知进行客观评估对于基础研究和临床应用都非常重要。本研究的目的是开发一种新方法,从单次试验的激光诱发脑电信号(LEP)中提取与疼痛相关的特征,用于疼痛感知分类。单次试验的LEP特征提取方法结合了使用共同空间模式(CSP)的空间滤波和多元线性回归(MLR)。CSP方法在将激光诱发的脑电反应与持续的脑电活动分离方面很有效,而MLR能够从单次试验的LEP波形中自动估计N2和P2的振幅和潜伏期。提取的单次试验LEP特征用于朴素贝叶斯分类器中,对受试者感知到的不同疼痛程度进行分类。实验结果表明,所提出的单次试验LEP特征提取方法能够有效地提取与疼痛相关的LEP特征,以实现高分类准确率。