Peng Liang, Hou Zengguang, Chen Yixiong, Wang Weiqun, Tong Lina, Li Pengfeng
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:4227-30. doi: 10.1109/EMBC.2013.6610478.
Hand motion classification using surface electromyography (sEMG) has been widely studied for its applications in upper-limb prosthesis and human-machine interface etc. Pattern-recognition based control methods have many advantages, and the reported classification accuracy can meet the requirements of practical applications. However, the pattern instability of sEMG in actual use limited their real implementations, and limb position variations may be one of the potential factors. In this paper, we give a pilot study of the reverse effect of forearm rotations on hand motion classification, and the results show that the forearm rotations can substantially degrade the classifier's performance: the average intra-position error is only 2.4%, but the average interposition classification error is as high as 44.0%. To solve this problem, we use an extra accelerometer to estimate the forearm rotation angles, and the best combination of sEMG data and accelerometer outputs can reduce the average classification error to 3.3%.
利用表面肌电图(sEMG)进行手部运动分类因其在上肢假肢和人机接口等方面的应用而得到广泛研究。基于模式识别的控制方法具有诸多优点,且报道的分类准确率能够满足实际应用的要求。然而,sEMG在实际使用中的模式不稳定性限制了它们的实际应用,肢体位置变化可能是潜在因素之一。在本文中,我们对手臂旋转对手部运动分类的反向影响进行了初步研究,结果表明手臂旋转会大幅降低分类器的性能:平均位置内误差仅为2.4%,但平均位置间分类误差高达44.0%。为解决这个问题,我们使用一个额外的加速度计来估计手臂旋转角度,并且sEMG数据与加速度计输出的最佳组合可将平均分类误差降低至3.3%。