Khalil Islam S M, Magdanz Veronika, Sanchez Samuel, Schmidt Oliver G, Abelmann Leon, Misra Sarthak
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5299-302. doi: 10.1109/EMBC.2013.6610745.
Development of targeted drug delivery systems using magnetic microrobots increases the therapeutic indices of drugs. These systems have to be incorporated with precise motion controllers. We demonstrate closed-loop motion control of microrobots under the influence of controlled magnetic fields. Point-to-point motion control of a cluster of iron oxide nanoparticles (diameter of 250 nm) is achieved by pulling the cluster towards a reference position using magnetic field gradients. Magnetotactic bacterium (MTB) is controlled by orienting the magnetic fields towards a reference position. MTB with membrane length of 5 µm moves towards the reference position using the propulsion force generated by its flagella. Similarly, self-propelled microjet with length of 50 µm is controlled by directing the microjet towards a reference position by external magnetic torque. The microjet moves along the field lines using the thrust force generated by the ejecting oxygen bubbles from one of its ends. Our control system positions the cluster of nanoparticles, an MTB and a microjet at an average velocity of 190 µm/s, 28 µm/s, 90 µm/s and within an average region-of-convergence of 132 µm, 40 µm, 235 µm, respectively.
使用磁性微型机器人开发靶向给药系统可提高药物的治疗指数。这些系统必须与精确的运动控制器相结合。我们展示了在受控磁场影响下微型机器人的闭环运动控制。通过使用磁场梯度将一簇直径为250 nm的氧化铁纳米颗粒拉向参考位置,实现了点对点运动控制。趋磁细菌(MTB)通过将磁场指向参考位置来进行控制。膜长度为5 µm的MTB利用其鞭毛产生的推进力向参考位置移动。同样,长度为50 µm的自推进式微型喷射器通过外部磁转矩将微型喷射器指向参考位置来进行控制。微型喷射器利用从其一端喷出氧气气泡产生的推力沿磁力线移动。我们的控制系统将纳米颗粒簇、MTB和微型喷射器分别以平均速度190 µm/s、28 µm/s、90 µm/s定位在平均收敛区域132 µm、40 µm、235 µm内。