Suppr超能文献

潜在的微型机器人药物递送系统的磁控:纳米颗粒、趋磁细菌和自推进微射流。

Magnetic control of potential microrobotic drug delivery systems: nanoparticles, magnetotactic bacteria and self-propelled microjets.

作者信息

Khalil Islam S M, Magdanz Veronika, Sanchez Samuel, Schmidt Oliver G, Abelmann Leon, Misra Sarthak

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5299-302. doi: 10.1109/EMBC.2013.6610745.

Abstract

Development of targeted drug delivery systems using magnetic microrobots increases the therapeutic indices of drugs. These systems have to be incorporated with precise motion controllers. We demonstrate closed-loop motion control of microrobots under the influence of controlled magnetic fields. Point-to-point motion control of a cluster of iron oxide nanoparticles (diameter of 250 nm) is achieved by pulling the cluster towards a reference position using magnetic field gradients. Magnetotactic bacterium (MTB) is controlled by orienting the magnetic fields towards a reference position. MTB with membrane length of 5 µm moves towards the reference position using the propulsion force generated by its flagella. Similarly, self-propelled microjet with length of 50 µm is controlled by directing the microjet towards a reference position by external magnetic torque. The microjet moves along the field lines using the thrust force generated by the ejecting oxygen bubbles from one of its ends. Our control system positions the cluster of nanoparticles, an MTB and a microjet at an average velocity of 190 µm/s, 28 µm/s, 90 µm/s and within an average region-of-convergence of 132 µm, 40 µm, 235 µm, respectively.

摘要

使用磁性微型机器人开发靶向给药系统可提高药物的治疗指数。这些系统必须与精确的运动控制器相结合。我们展示了在受控磁场影响下微型机器人的闭环运动控制。通过使用磁场梯度将一簇直径为250 nm的氧化铁纳米颗粒拉向参考位置,实现了点对点运动控制。趋磁细菌(MTB)通过将磁场指向参考位置来进行控制。膜长度为5 µm的MTB利用其鞭毛产生的推进力向参考位置移动。同样,长度为50 µm的自推进式微型喷射器通过外部磁转矩将微型喷射器指向参考位置来进行控制。微型喷射器利用从其一端喷出氧气气泡产生的推力沿磁力线移动。我们的控制系统将纳米颗粒簇、MTB和微型喷射器分别以平均速度190 µm/s、28 µm/s、90 µm/s定位在平均收敛区域132 µm、40 µm、235 µm内。

相似文献

1
2
Wireless magnetic-based closed-loop control of self-propelled microjets.
PLoS One. 2014 Feb 5;9(2):e83053. doi: 10.1371/journal.pone.0083053. eCollection 2014.
3
Bioinspired Soft Microrobots with Precise Magneto-Collective Control for Microvascular Thrombolysis.
Adv Mater. 2020 Jul;32(26):e2000366. doi: 10.1002/adma.202000366. Epub 2020 May 20.
4
Microrobotic navigable entities for Magnetic Resonance Targeting.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1942-5. doi: 10.1109/IEMBS.2010.5627768.
5
Flagella and Swimming Behavior of Marine Magnetotactic Bacteria.
Biomolecules. 2020 Mar 16;10(3):460. doi: 10.3390/biom10030460.
6
Construction and operation of a microrobot based on magnetotactic bacteria in a microfluidic chip.
Biomicrofluidics. 2012 Jun;6(2):24107-2410712. doi: 10.1063/1.3702444. Epub 2012 Apr 10.
7
Dynamics of catalytic tubular microjet engines: dependence on geometry and chemical environment.
Nanoscale. 2011 Dec;3(12):5083-9. doi: 10.1039/c1nr10840a. Epub 2011 Nov 7.
9
Magnetotaxis Enables Magnetotactic Bacteria to Navigate in Flow.
Small. 2018 Feb;14(5). doi: 10.1002/smll.201702982. Epub 2017 Dec 4.
10
Bacteria Flagella-Mimicking Polymer Multilayer Magnetic Microrobots.
Small Methods. 2025 Apr;9(4):e2401558. doi: 10.1002/smtd.202401558. Epub 2025 Jan 21.

引用本文的文献

1
Magnetic microgels and nanogels: Physical mechanisms and biomedical applications.
Bioeng Transl Med. 2020 Oct 21;6(1):e10190. doi: 10.1002/btm2.10190. eCollection 2021 Jan.
2
Superparamagnetic iron oxide nanoparticles (SPIONs) as a multifunctional tool in various cancer therapies.
Rep Pract Oncol Radiother. 2019 Jul-Aug;24(4):307-314. doi: 10.1016/j.rpor.2019.04.002. Epub 2019 May 20.

本文引用的文献

1
Nano/Microscale motors: biomedical opportunities and challenges.
ACS Nano. 2012 Jul 24;6(7):5745-51. doi: 10.1021/nn3028997. Epub 2012 Jul 6.
2
Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines.
Chem Soc Rev. 2011 May;40(5):2109-19. doi: 10.1039/c0cs00078g. Epub 2011 Feb 22.
3
Controlled manipulation of multiple cells using catalytic microbots.
Chem Commun (Camb). 2011 Jan 14;47(2):698-700. doi: 10.1039/c0cc04126b. Epub 2010 Nov 19.
4
Microrobots for minimally invasive medicine.
Annu Rev Biomed Eng. 2010 Aug 15;12:55-85. doi: 10.1146/annurev-bioeng-010510-103409.
6
Catalytic microtubular jet engines self-propelled by accumulated gas bubbles.
Small. 2009 Jul;5(14):1688-92. doi: 10.1002/smll.200900021.
7
Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery.
Mol Cancer Ther. 2006 Aug;5(8):1909-17. doi: 10.1158/1535-7163.MCT-06-0141.
8
Microscopic artificial swimmers.
Nature. 2005 Oct 6;437(7060):862-5. doi: 10.1038/nature04090.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验