Sung Baeckkyoung, Kim Min-Ho, Abelmann Leon
KIST Europe Forschungsgesellschaft mbH Saarbrücken Germany.
Department of Biological Sciences Kent State University Kent Ohio USA.
Bioeng Transl Med. 2020 Oct 21;6(1):e10190. doi: 10.1002/btm2.10190. eCollection 2021 Jan.
Soft micro- and nanostructures have been extensively developed for biomedical applications. The main focus has been on multifunctional composite materials that combine the advantages of hydrogels and colloidal particles. Magnetic microgels and nanogels can be realized by hybridizing stimuli-sensitive gels and magnetic nanoparticles. They are of particular interest since they can be controlled in a wide range of biological environments by using magnetic fields. In this review, we elucidate physical principles underlying the design of magnetic microgels and nanogels for biomedical applications. Particularly, this article provides a comprehensive and conceptual overview on the correlative structural design and physical functionality of the magnetic gel systems under the concept of colloidal biodevices. To this end, we begin with an overview of physicochemical mechanisms related to stimuli-responsive hydrogels and transport phenomena and summarize the magnetic properties of inorganic nanoparticles. On the basis of the engineering principles, we categorize and summarize recent advances in magnetic hybrid microgels and nanogels, with emphasis on the biomedical applications of these materials. Potential applications of these hybrid microgels and nanogels in anticancer treatment, protein therapeutics, gene therapy, bioseparation, biocatalysis, and regenerative medicine are highlighted. Finally, current challenges and future opportunities in the design of smart colloidal biodevices are discussed.
柔软的微结构和纳米结构已被广泛开发用于生物医学应用。主要关注点是结合了水凝胶和胶体颗粒优势的多功能复合材料。磁性微凝胶和纳米凝胶可通过将刺激敏感凝胶与磁性纳米颗粒杂交来实现。它们特别受关注,因为可以利用磁场在广泛的生物环境中对其进行控制。在本综述中,我们阐明了用于生物医学应用的磁性微凝胶和纳米凝胶设计背后的物理原理。特别是,本文在胶体生物器件的概念下,对磁性凝胶系统的相关结构设计和物理功能提供了全面的概念性概述。为此,我们首先概述与刺激响应水凝胶和传输现象相关的物理化学机制,并总结无机纳米颗粒的磁性。基于工程原理,我们对磁性杂化微凝胶和纳米凝胶的最新进展进行分类和总结,重点是这些材料的生物医学应用。这些杂化微凝胶和纳米凝胶在抗癌治疗、蛋白质治疗、基因治疗、生物分离、生物催化和再生医学中的潜在应用得到了强调。最后,讨论了智能胶体生物器件设计中的当前挑战和未来机遇。