Suppr超能文献

细菌鞭毛模拟聚合物多层磁性微机器人。

Bacteria Flagella-Mimicking Polymer Multilayer Magnetic Microrobots.

作者信息

Lu Liang, Bai Shuang, Shi Jiaqi, Zhang Hutao, Hou Gang, Wang Wei, Sun Shoubin, Huang Tianyun, Jia Yuxin, Granovsky Alexander, Nikolai Perov, Wu Zhiguang, Xie Hui, Wu He

机构信息

The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China.

School of Medicine and Health, Harbin Institute of Technology, Harbin, 150006, China.

出版信息

Small Methods. 2025 Apr;9(4):e2401558. doi: 10.1002/smtd.202401558. Epub 2025 Jan 21.

Abstract

Mass production of biomedical microrobots demands expensive and complex preparation techniques and versatile biocompatible materials. Learning from natural bacteria flagella, the study demonstrates a magnetic polymer multilayer cylindrical microrobot that bestows the controllable propulsion upon an external rotating magnetic field with uniform intensity. The magnetic microrobots are constructed by template-assisted layer-by-layer technique and subsequent functionalization of magnetic particles onto the large opening of the microrobots. Geometric variables of the polymer microrobots, such as the diameter and wall thickness, can be controlled by selection of porous template and layers of assembly. The microrobots perform controllable propulsion through the manipulation of magnetic field. The comparative analysis of the movement behavior reveals that the deformation of microrobots may be attributed to the propulsion upon rotating magnetic field, which is similar to that of natural bacteria. The influence of actuation and frequency on the velocity of the microrobots is studied. Such polymer multilayer magnetic microrobots may provide a novel concept to develop rapidly delivering drug therapeutic agents for diverse practical biomedical uses.

摘要

生物医学微型机器人的大规模生产需要昂贵且复杂的制备技术以及通用的生物相容性材料。该研究借鉴天然细菌鞭毛,展示了一种磁性聚合物多层圆柱形微型机器人,它能在强度均匀的外部旋转磁场作用下实现可控推进。磁性微型机器人通过模板辅助逐层技术构建,并随后将磁性颗粒功能化到微型机器人的大开口上。聚合物微型机器人的几何变量,如直径和壁厚,可以通过选择多孔模板和组装层数来控制。微型机器人通过磁场操纵实现可控推进。对运动行为的对比分析表明,微型机器人的变形可能归因于旋转磁场作用下的推进,这与天然细菌的情况类似。研究了驱动和频率对微型机器人速度的影响。这种聚合物多层磁性微型机器人可能为开发用于各种实际生物医学用途的快速递送药物治疗剂提供一个新的概念。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验