Suppr超能文献

将多尺度建模与药物效应整合用于癌症治疗。

Integrating Multiscale Modeling with Drug Effects for Cancer Treatment.

作者信息

Li Xiangfang L, Oduola Wasiu O, Qian Lijun, Dougherty Edward R

机构信息

Department of Electrical and Computer Engineering, Prairie View A&M University, Prairie View, TX, USA.

Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.

出版信息

Cancer Inform. 2016 Jan 13;14(Suppl 5):21-31. doi: 10.4137/CIN.S30797. eCollection 2015.

Abstract

In this paper, we review multiscale modeling for cancer treatment with the incorporation of drug effects from an applied system's pharmacology perspective. Both the classical pharmacology and systems biology are inherently quantitative; however, systems biology focuses more on networks and multi factorial controls over biological processes rather than on drugs and targets in isolation, whereas systems pharmacology has a strong focus on studying drugs with regard to the pharmacokinetic (PK) and pharmacodynamic (PD) relations accompanying drug interactions with multiscale physiology as well as the prediction of dosage-exposure responses and economic potentials of drugs. Thus, it requires multiscale methods to address the need for integrating models from the molecular levels to the cellular, tissue, and organism levels. It is a common belief that tumorigenesis and tumor growth can be best understood and tackled by employing and integrating a multifaceted approach that includes in vivo and in vitro experiments, in silico models, multiscale tumor modeling, continuous/discrete modeling, agent-based modeling, and multiscale modeling with PK/PD drug effect inputs. We provide an example application of multiscale modeling employing stochastic hybrid system for a colon cancer cell line HCT-116 with the application of Lapatinib drug. It is observed that the simulation results are similar to those observed from the setup of the wet-lab experiments at the Translational Genomics Research Institute.

摘要

在本文中,我们从应用系统药理学的角度,结合药物效应,综述了癌症治疗的多尺度建模。经典药理学和系统生物学本质上都是定量的;然而,系统生物学更侧重于生物过程的网络和多因素控制,而非孤立地关注药物和靶点,而系统药理学则强烈关注研究药物与多尺度生理学的药物相互作用所伴随的药代动力学(PK)和药效动力学(PD)关系,以及药物的剂量-暴露反应预测和经济潜力。因此,需要多尺度方法来满足从分子水平到细胞、组织和生物体水平整合模型的需求。人们普遍认为,通过采用和整合多方面的方法,包括体内和体外实验、计算机模型、多尺度肿瘤建模、连续/离散建模、基于主体的建模以及具有PK/PD药物效应输入的多尺度建模,可以最好地理解和解决肿瘤发生和肿瘤生长问题。我们提供了一个多尺度建模的示例应用,该模型采用随机混合系统对结肠癌细胞系HCT-116应用拉帕替尼药物。观察到模拟结果与在转化基因组学研究所进行的湿实验室实验设置中观察到的结果相似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bba/4712979/899ffa415ab4/cin-suppl.5-2015-021f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验