Ouzounoglou Eleftherios, Kolokotroni Eleni, Stanulla Martin, Stamatakos Georgios S
In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, National Technical University of Athens, Athens, Greece.
Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.
Interface Focus. 2018 Feb 6;8(1):20160163. doi: 10.1098/rsfs.2016.0163. Epub 2017 Dec 15.
Efficient use of Virtual Physiological Human (VPH)-type models for personalized treatment response prediction purposes requires a precise model parameterization. In the case where the available personalized data are not sufficient to fully determine the parameter values, an appropriate prediction task may be followed. This study, a hybrid combination of computational optimization and machine learning methods with an already developed mechanistic model called the acute lymphoblastic leukaemia (ALL) Oncosimulator which simulates ALL progression and treatment response is presented. These methods are used in order for the parameters of the model to be estimated for retrospective cases and to be predicted for prospective ones. The parameter value prediction is based on a regression model trained on retrospective cases. The proposed Hybrid ALL Oncosimulator system has been evaluated when predicting the pre-phase treatment outcome in ALL. This has been correctly achieved for a significant percentage of patient cases tested (approx. 70% of patients). Moreover, the system is capable of denying the classification of cases for which the results are not trustworthy enough. In that case, potentially misleading predictions for a number of patients are avoided, while the classification accuracy for the remaining patient cases further increases. The results obtained are particularly encouraging regarding the soundness of the proposed methodologies and their relevance to the process of achieving clinical applicability of the proposed Hybrid ALL Oncosimulator system and VPH models in general.
为实现个性化治疗反应预测目的而高效使用虚拟生理人体(VPH)类型模型,需要精确的模型参数化。在可用的个性化数据不足以完全确定参数值的情况下,可能需要进行适当的预测任务。本研究提出了一种计算优化与机器学习方法的混合组合,结合了一个已开发的名为急性淋巴细胞白血病(ALL)肿瘤模拟器的机制模型,该模型可模拟ALL进展和治疗反应。使用这些方法是为了对回顾性病例估计模型参数,并对前瞻性病例进行预测。参数值预测基于在回顾性病例上训练的回归模型。所提出的混合ALL肿瘤模拟器系统在预测ALL预治疗阶段结果时进行了评估。对于测试的相当一部分患者病例(约70%的患者),这一预测已正确实现。此外,该系统能够拒绝那些结果不够可靠的病例的分类。在这种情况下,避免了对一些患者可能产生误导的预测,同时其余患者病例的分类准确率进一步提高。就所提出方法的合理性及其与一般实现所提出的混合ALL肿瘤模拟器系统和VPH模型临床适用性过程的相关性而言,所获得的结果特别令人鼓舞。