Suppr超能文献

利用脑电图进行用户意图的高精度解码以控制下肢外骨骼。

High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton.

作者信息

Kilicarslan Atilla, Prasad Saurabh, Grossman Robert G, Contreras-Vidal Jose L

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5606-9. doi: 10.1109/EMBC.2013.6610821.

Abstract

Brain-Machine Interface (BMI) systems allow users to control external mechanical systems using their thoughts. Commonly used in literature are invasive techniques to acquire brain signals and decode user's attempted motions to drive these systems (e.g. a robotic manipulator). In this work we use a lower-body exoskeleton and measure the users brain activity using non-invasive electroencephalography (EEG). The main focus of this study is to decode a paraplegic subject's motion intentions and provide him with the ability of walking with a lower-body exoskeleton accordingly. We present our novel method of decoding with high offline evaluation accuracies (around 98%), our closed loop implementation structure with considerably short on-site training time (around 38 sec), and preliminary results from the real-time closed loop implementation (NeuroRex) with a paraplegic test subject.

摘要

脑机接口(BMI)系统允许用户通过思维来控制外部机械系统。文献中常用的是侵入性技术来获取脑信号并解码用户的运动意图以驱动这些系统(例如机器人操纵器)。在这项工作中,我们使用了一种下半身外骨骼,并使用非侵入性脑电图(EEG)来测量用户的大脑活动。本研究的主要重点是解码截瘫患者的运动意图,并相应地为其提供使用下半身外骨骼行走的能力。我们展示了具有高离线评估准确率(约98%)的新颖解码方法、现场训练时间相当短(约38秒)的闭环实现结构,以及与一名截瘫测试对象进行实时闭环实现(NeuroRex)的初步结果。

相似文献

1
High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5606-9. doi: 10.1109/EMBC.2013.6610821.
2
NeuroRex: a clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:1579-82. doi: 10.1109/EMBC.2013.6609816.
3
A brain-controlled lower-limb exoskeleton for human gait training.
Rev Sci Instrum. 2017 Oct;88(10):104302. doi: 10.1063/1.5006461.
4
A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control.
Sensors (Basel). 2016 Dec 2;16(12):2050. doi: 10.3390/s16122050.
6
Control of an Ambulatory Exoskeleton with a Brain-Machine Interface for Spinal Cord Injury Gait Rehabilitation.
Front Neurosci. 2016 Aug 3;10:359. doi: 10.3389/fnins.2016.00359. eCollection 2016.
7
Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
J Neural Eng. 2016 Jun;13(3):036006. doi: 10.1088/1741-2560/13/3/036006. Epub 2016 Apr 11.
8
Brain-machine interfaces for controlling lower-limb powered robotic systems.
J Neural Eng. 2018 Apr;15(2):021004. doi: 10.1088/1741-2552/aaa8c0.
9
Detecting intention to grasp during reaching movements from EEG.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:1115-8. doi: 10.1109/EMBC.2015.7318561.

引用本文的文献

2
Neuro-motor controlled wearable augmentations: current research and emerging trends.
Front Neurorobot. 2024 Oct 31;18:1443010. doi: 10.3389/fnbot.2024.1443010. eCollection 2024.
3
Emerging Medical Technologies and Their Use in Bionic Repair and Human Augmentation.
Bioengineering (Basel). 2024 Jul 9;11(7):695. doi: 10.3390/bioengineering11070695.
5
Development and testing of the aerial porter exoskeleton.
Wearable Technol. 2022 Jan 7;3:e1. doi: 10.1017/wtc.2021.18. eCollection 2022.
6
Biohybrid neural interfaces: improving the biological integration of neural implants.
Chem Commun (Camb). 2023 Dec 14;59(100):14745-14758. doi: 10.1039/d3cc05006h.
7
Brain-computer interface enhanced by virtual reality training for controlling a lower limb exoskeleton.
iScience. 2023 Apr 15;26(5):106675. doi: 10.1016/j.isci.2023.106675. eCollection 2023 May 19.
9
Opportunities and challenges in the development of exoskeletons for locomotor assistance.
Nat Biomed Eng. 2023 Apr;7(4):456-472. doi: 10.1038/s41551-022-00984-1. Epub 2022 Dec 22.

本文引用的文献

1
Reach and grasp by people with tetraplegia using a neurally controlled robotic arm.
Nature. 2012 May 16;485(7398):372-5. doi: 10.1038/nature11076.
2
Decoding intra-limb and inter-limb kinematics during treadmill walking from scalp electroencephalographic (EEG) signals.
IEEE Trans Neural Syst Rehabil Eng. 2012 Mar;20(2):212-9. doi: 10.1109/TNSRE.2012.2188304.
3
Neural decoding of treadmill walking from noninvasive electroencephalographic signals.
J Neurophysiol. 2011 Oct;106(4):1875-87. doi: 10.1152/jn.00104.2011. Epub 2011 Jul 13.
4
Fast attainment of computer cursor control with noninvasively acquired brain signals.
J Neural Eng. 2011 Jun;8(3):036010. doi: 10.1088/1741-2560/8/3/036010. Epub 2011 Apr 15.
5
Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia.
IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):193-203. doi: 10.1109/TNSRE.2011.2107750. Epub 2011 Jan 28.
7
Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals.
J Neurosci. 2010 Mar 3;30(9):3432-7. doi: 10.1523/JNEUROSCI.6107-09.2010.
8
Unscented Kalman filter for brain-machine interfaces.
PLoS One. 2009 Jul 15;4(7):e6243. doi: 10.1371/journal.pone.0006243.
9
Extraction algorithms for cortical control of arm prosthetics.
Curr Opin Neurobiol. 2001 Dec;11(6):701-7. doi: 10.1016/s0959-4388(01)00272-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验