Kilicarslan Atilla, Prasad Saurabh, Grossman Robert G, Contreras-Vidal Jose L
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5606-9. doi: 10.1109/EMBC.2013.6610821.
Brain-Machine Interface (BMI) systems allow users to control external mechanical systems using their thoughts. Commonly used in literature are invasive techniques to acquire brain signals and decode user's attempted motions to drive these systems (e.g. a robotic manipulator). In this work we use a lower-body exoskeleton and measure the users brain activity using non-invasive electroencephalography (EEG). The main focus of this study is to decode a paraplegic subject's motion intentions and provide him with the ability of walking with a lower-body exoskeleton accordingly. We present our novel method of decoding with high offline evaluation accuracies (around 98%), our closed loop implementation structure with considerably short on-site training time (around 38 sec), and preliminary results from the real-time closed loop implementation (NeuroRex) with a paraplegic test subject.
脑机接口(BMI)系统允许用户通过思维来控制外部机械系统。文献中常用的是侵入性技术来获取脑信号并解码用户的运动意图以驱动这些系统(例如机器人操纵器)。在这项工作中,我们使用了一种下半身外骨骼,并使用非侵入性脑电图(EEG)来测量用户的大脑活动。本研究的主要重点是解码截瘫患者的运动意图,并相应地为其提供使用下半身外骨骼行走的能力。我们展示了具有高离线评估准确率(约98%)的新颖解码方法、现场训练时间相当短(约38秒)的闭环实现结构,以及与一名截瘫测试对象进行实时闭环实现(NeuroRex)的初步结果。