Department of Computer Science, Brown University, Providence, RI 02912, USA.
IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):193-203. doi: 10.1109/TNSRE.2011.2107750. Epub 2011 Jan 28.
We present a point-and-click intracortical neural interface system (NIS) that enables humans with tetraplegia to volitionally move a 2-D computer cursor in any desired direction on a computer screen, hold it still, and click on the area of interest. This direct brain-computer interface extracts both discrete (click) and continuous (cursor velocity) signals from a single small population of neurons in human motor cortex. A key component of this system is a multi-state probabilistic decoding algorithm that simultaneously decodes neural spiking activity of a small population of neurons and outputs either a click signal or the velocity of the cursor. The algorithm combines a linear classifier, which determines whether the user is intending to click or move the cursor, with a Kalman filter that translates the neural population activity into cursor velocity. We present a paradigm for training the multi-state decoding algorithm using neural activity observed during imagined actions. Two human participants with tetraplegia (paralysis of the four limbs) performed a closed-loop radial target acquisition task using the point-and-click NIS over multiple sessions. We quantified point-and-click performance using various human-computer interaction measurements for pointing devices. We found that participants could control the cursor motion and click on specified targets with a small error rate (< 3% in one participant). This study suggests that signals from a small ensemble of motor cortical neurons (∼40) can be used for natural point-and-click 2-D cursor control of a personal computer.
我们提出了一种基于点击的皮层内神经接口系统(NIS),使四肢瘫痪的人能够自主地将计算机屏幕上的二维光标移动到任意期望的方向,然后将其停留在该位置并点击感兴趣的区域。这个直接的脑机接口从人类运动皮层的单个小神经元群体中提取离散(点击)和连续(光标速度)信号。该系统的一个关键组成部分是一种多状态概率解码算法,该算法可以同时解码一小群神经元的神经尖峰活动,并输出点击信号或光标的速度。该算法将线性分类器与卡尔曼滤波器相结合,线性分类器用于确定用户是否打算点击或移动光标,而卡尔曼滤波器则将神经元群体的活动转换为光标速度。我们提出了一种使用想象动作期间观察到的神经活动来训练多状态解码算法的范例。两名四肢瘫痪的人类参与者(四肢瘫痪)在多个会话中使用基于点击的 NIS 执行闭环径向目标获取任务。我们使用各种人机交互测量方法来量化基于点击的性能。我们发现,参与者可以以较小的错误率(在一名参与者中小于 3%)控制光标运动并点击指定的目标。这项研究表明,来自一小群运动皮层神经元(约 40 个)的信号可用于自然点击二维光标的个人计算机控制。