Suppr超能文献

在带着情感依恋听音乐时对人脑进行图论连通性分析:可行性研究

Graph theoretical connectivity analysis of the human brain while listening to music with emotional attachment: feasibility study.

作者信息

Karmonik Christof, Brandt Anthony K, Fung Steve H, Grossman Robert G, Frazier J Todd

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:6526-9. doi: 10.1109/EMBC.2013.6611050.

Abstract

Benefits of listening to music with emotional attachment while recovering from a cerebral ischemic event have been reported. To develop a better understanding of the effects of music listening on the human brain, an algorithm for the graph-theoretical analysis of functional magnetic resonance imaging (fMRI) data was developed. From BOLD data of two paradigms (block-design, first piece: music without emotional attachment, additional visual guidance by a moving cursor in the score sheet; second piece: music with emotional attachment), network graphs were constructed with correlations between signal time courses as edge weights. Functional subunits in these graphs were identified with the MCODE clustering algorithm and mapped back into anatomical space using AFNI. Emotional centers including the right amygdala and bilateral insula were activated by the second piece (emotional attachment) but not by the first piece. Network clustering analysis revealed two separate networks of small-world property corresponding to task-oriented and resting state conditions, respectively. Functional subunits with highest interactions were bilateral precuneus for the first piece and left middle frontal gyrus and right amygdala, bilateral insula, left middle temporal gyrus for the second piece. Our results indicate that fMRI in connection with graph theoretical network analysis is capable of identifying and differentiating functional subunits in the human brain when listening to music with and without emotional attachment.

摘要

据报道,在从脑缺血事件恢复过程中,带着情感依恋聆听音乐具有益处。为了更好地理解聆听音乐对人脑的影响,开发了一种用于功能磁共振成像(fMRI)数据的图论分析算法。根据两个范式的血氧水平依赖(BOLD)数据(组块设计,第一段:无情感依恋的音乐,乐谱上有移动光标提供额外视觉引导;第二段:有情感依恋的音乐),以信号时间历程之间的相关性作为边权重构建网络图。使用MCODE聚类算法识别这些图中的功能亚单位,并使用AFNI将其映射回解剖学空间。第二段音乐(情感依恋)激活了包括右侧杏仁核和双侧脑岛在内的情感中枢,而第一段音乐未激活。网络聚类分析揭示了分别对应于任务导向和静息状态条件的两个具有小世界特性的独立网络。第一段音乐中具有最高交互作用的功能亚单位是双侧楔前叶,第二段音乐中是左侧额中回、右侧杏仁核、双侧脑岛和左侧颞中回。我们的结果表明,结合图论网络分析的fMRI能够在聆听有情感依恋和无情感依恋的音乐时识别和区分人脑中的功能亚单位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验