Suppr超能文献

用于体内荧光成像及抑制阿尔茨海默病中铜诱导的淀粉样β蛋白物种交联的姜黄素类似物的设计与合成

Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer's disease.

作者信息

Zhang Xueli, Tian Yanli, Li Zeng, Tian Xiaoyu, Sun Hongbin, Liu Hong, Moore Anna, Ran Chongzhao

机构信息

Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School , Building 75, Charlestown, Massachusetts 02129, United States.

出版信息

J Am Chem Soc. 2013 Nov 6;135(44):16397-409. doi: 10.1021/ja405239v. Epub 2013 Oct 25.

Abstract

In this article, we first designed and synthesized curcumin-based near-infrared (NIR) fluorescence imaging probes for detecting both soluble and insoluble amyloid beta (Aβ) species and then an inhibitor that could attenuate cross-linking of Aβ induced by copper. According to our previous results and the possible structural stereohindrance compatibility of the Aβ peptide and the hydrophobic/hydrophilic property of the Aβ13-20 (HHQKLVFF) fragment, NIR imaging probe CRANAD-58 was designed and synthesized. As expected CRANAD-58 showed significant fluorescence property changes upon mixing with both soluble and insoluble Aβ species in vitro. In vivo NIR imaging revealed that CRANAD-58 was capable of differentiating transgenic and wild-type mice as young as 4 months old, the age that lacks apparently visible Aβ plaques and Aβ is likely in its soluble forms. According to our limited studies on the interaction mechanism between CRANAD-58 and Aβ, we also designed CRANAD-17 to attenuate the cross-linking of Aβ42 induced by copper. It is well-known that the coordination of copper with imidazoles on Histidine-13 and 14 (H13, H14) of Aβ peptides could initialize covalent cross-linking of Aβ. In CRANAD-17, a curcumin scaffold was used as an anchoring moiety to usher the designed compound to the vicinity of H13 and H14 of Aβ, and imidazole rings were incorporated to compete with H13/H14 for copper binding. The results of SDS-PAGE gel and Western blot indicated that CRANAD-17 was capable of inhibiting Aβ42 cross-linking induced by copper. This raises a potential for CRANAD-17 to be considered for AD therapy.

摘要

在本文中,我们首先设计并合成了基于姜黄素的近红外(NIR)荧光成像探针,用于检测可溶性和不溶性淀粉样β(Aβ)物质,然后设计了一种抑制剂,该抑制剂可以减弱铜诱导的Aβ交联。根据我们之前的研究结果以及Aβ肽可能的结构立体位阻兼容性和Aβ13-20(HHQKLVFF)片段的疏水/亲水性,设计并合成了近红外成像探针CRANAD-58。正如预期的那样,CRANAD-58在体外与可溶性和不溶性Aβ物质混合后显示出显著的荧光性质变化。体内近红外成像显示,CRANAD-58能够区分4个月大的转基因小鼠和野生型小鼠,这个年龄的小鼠明显缺乏可见的Aβ斑块,且Aβ可能以其可溶性形式存在。根据我们对CRANAD-58与Aβ相互作用机制的有限研究,我们还设计了CRANAD-17来减弱铜诱导的Aβ42交联。众所周知,铜与Aβ肽上组氨酸-13和14(H13、H14)上的咪唑配位可以引发Aβ的共价交联。在CRANAD-17中,姜黄素支架用作锚定部分,将设计的化合物引导至Aβ的H13和H14附近,并引入咪唑环与H13/H14竞争铜结合。SDS-PAGE凝胶和蛋白质印迹结果表明,CRANAD-17能够抑制铜诱导的Aβ42交联。这增加了CRANAD-17被考虑用于阿尔茨海默病治疗的可能性。

相似文献

2
Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer's disease.
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9734-9. doi: 10.1073/pnas.1505420112. Epub 2015 Jul 21.
3
Engineering of donor-acceptor-donor curcumin analogues as near-infrared fluorescent probes for imaging of amyloid-β species.
Theranostics. 2022 Apr 4;12(7):3178-3195. doi: 10.7150/thno.68679. eCollection 2022.
4
CRANAD-28: A Robust Fluorescent Compound for Visualization of Amyloid Beta Plaques.
Molecules. 2020 Feb 16;25(4):863. doi: 10.3390/molecules25040863.
5
Design, synthesis and evaluation of curcumin-based fluorescent probes to detect Aβ fibrils.
Bioorg Med Chem Lett. 2018 Dec 1;28(22):3520-3525. doi: 10.1016/j.bmcl.2018.10.002. Epub 2018 Oct 3.
7
8
Design, synthesis, and biological evaluation of curcumin analogues as multifunctional agents for the treatment of Alzheimer's disease.
Bioorg Med Chem. 2011 Sep 15;19(18):5596-604. doi: 10.1016/j.bmc.2011.07.033. Epub 2011 Jul 24.
9
Curcumin Complex Analogues as Near-Infrared Fluorescent Probes for Monitoring all Aβ Species in the Early Alzheimer's Disease Model.
ACS Chem Neurosci. 2021 Oct 6;12(19):3683-3689. doi: 10.1021/acschemneuro.1c00419. Epub 2021 Sep 14.

引用本文的文献

1
2
Microfluidic Systems: Recent Advances in Chronic Disease Diagnosis and Their Therapeutic Management.
Indian J Microbiol. 2025 Mar;65(1):189-203. doi: 10.1007/s12088-024-01296-5. Epub 2024 May 27.
3
Ligands for Protein Fibrils of Amyloid-β, α-Synuclein, and Tau.
Chem Rev. 2025 Jun 11;125(11):5282-5348. doi: 10.1021/acs.chemrev.4c00838. Epub 2025 May 6.
4
Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases.
Signal Transduct Target Ther. 2025 Feb 3;10(1):31. doi: 10.1038/s41392-024-02071-0.
5
Response of Fluorescent Boron Difluoride β-Diketonates to X-Rays.
J Fluoresc. 2024 Sep 20. doi: 10.1007/s10895-024-03934-z.
6
Methods for high throughput discovery of fluoroprobes that recognize tau fibril polymorphs.
bioRxiv. 2024 Sep 2:2024.09.02.610853. doi: 10.1101/2024.09.02.610853.
7
Advancing Central Nervous System Drug Delivery with Microtubule-Dependent Transcytosis of Novel Aqueous Compounds.
Biomater Res. 2024 Jul 24;28:0051. doi: 10.34133/bmr.0051. eCollection 2024.
8
Half-Curcumin-Based Chemiluminescence Probes and Their Applications in Detecting Quasi-Stable Oxidized Proteins.
Angew Chem Int Ed Engl. 2024 Oct 1;63(40):e202409896. doi: 10.1002/anie.202409896. Epub 2024 Sep 2.
9
Investigation of and of Gene in Individuals with Late-Onset Alzheimer's Disease in Iran.
Iran J Public Health. 2024 Mar;53(3):663-670. doi: 10.18502/ijph.v53i3.15148.
10
Small molecule targeted therapies for endometrial cancer: progress, challenges, and opportunities.
RSC Med Chem. 2024 Apr 11;15(6):1828-1848. doi: 10.1039/d4md00089g. eCollection 2024 Jun 19.

本文引用的文献

1
Target- and mechanism-based therapeutics for neurodegenerative diseases: strength in numbers.
J Med Chem. 2013 Apr 25;56(8):3121-47. doi: 10.1021/jm3015926. Epub 2013 Mar 27.
2
Current and future treatments for Alzheimer's disease.
Ther Adv Neurol Disord. 2013 Jan;6(1):19-33. doi: 10.1177/1756285612461679.
3
Current neuroimaging techniques in Alzheimer's disease and applications in animal models.
Am J Nucl Med Mol Imaging. 2012;2(3):386-404. Epub 2012 Jul 10.
4
Alzheimer disease in 2020.
Cold Spring Harb Perspect Med. 2012 Nov 1;2(11):a011585. doi: 10.1101/cshperspect.a011585.
5
Development of positron emission tomography β-amyloid plaque imaging agents.
Semin Nucl Med. 2012 Nov;42(6):423-32. doi: 10.1053/j.semnuclmed.2012.07.001.
6
Hydrogen bonding in Alzheimer's amyloid-β fibrils probed by 15N{17O} REAPDOR solid-state NMR spectroscopy.
Angew Chem Int Ed Engl. 2012 Oct 8;51(41):10289-92. doi: 10.1002/anie.201203595. Epub 2012 Sep 13.
7
BODIPY-based molecular probe for imaging of cerebral β-amyloid plaques.
ACS Chem Neurosci. 2012 Apr 18;3(4):319-24. doi: 10.1021/cn3000058. Epub 2012 Feb 17.
8
Heterodivalent linked macrocyclic β-sheets with enhanced activity against Aβ aggregation: two sites are better than one.
J Am Chem Soc. 2012 Aug 29;134(34):14179-84. doi: 10.1021/ja305416a. Epub 2012 Aug 17.
9
Probing and trapping a sensitive conformation: amyloid-β fibrils, oligomers, and dimers.
J Alzheimers Dis. 2012;32(1):197-215. doi: 10.3233/JAD-2012-120880.
10
Self-assembly of flexible β-strands into immobile amyloid-like β-sheets in membranes as revealed by solid-state 19F NMR.
J Am Chem Soc. 2012 Apr 18;134(15):6512-5. doi: 10.1021/ja301328f. Epub 2012 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验