Suppr超能文献

磁共振声学辐射力成像(MR-ARFI)和磁敏感加权成像(SWI)用于可视化离体猪脑内的钙化灶。

MR-acoustic radiation force imaging (MR-ARFI) and susceptibility weighted imaging (SWI) to visualize calcifications in ex vivo swine brain.

作者信息

Bitton Rachel R, Pauly Kim R Butts

机构信息

Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA.

出版信息

J Magn Reson Imaging. 2014 May;39(5):1294-300. doi: 10.1002/jmri.24255. Epub 2013 Oct 10.

Abstract

PURPOSE

To present the use of MR-acoustic radiation force imaging (MR-ARFI) and susceptibility weighted imaging (SWI) to visualize calcifications in ex vivo brain tissue as a planning indicator for MR-guided focused ultrasound (MRgFUS).

MATERIALS AND METHODS

Calcifications were implanted in ex vivo swine brain and imaged using SWI, MR-ARFI, and computed tomography (CT). SWI-filtered phase images used 3D gradient recalled echo (GRE) images with a Fourier-based unwrapping algorithm. The MR-ARFI pulse sequence used a 2DFT spin-echo with repeated bipolar encoding gradients in the direction of the longitudinal ultrasound beam. MR-ARFI interrogations scanned a subregion (14 × 10 × 12 mm) of the brain surrounding the calcification. They were combined into a single displacement weighted map, using the sum of squares method. Calcification size estimates were based on image profiles plotted along the ±x and ±z direction, at the full-width half-maximum.

RESULTS

Both MR-ARFI and SWI were able to visualize the calcifications. The contrast ratio was 150 for CT, 12 for SWI, and 12 for MR-ARFI. Profile measures were 1.35 × 1.28 mm on CT, 1.24 × 1.73 mm on SWI, and 2.45 × 3.02 mm on MR-ARFI. MR-ARFI displacement showed a linear increase with acoustic power (20-80 W), and also increased with calcification size.

CONCLUSION

The use of SWI-filtered phase and MR-ARFI have the potential to provide a clinical indicator of calcification relevance in the planning of a transcranial MRgFUS treatment.

摘要

目的

介绍磁共振声辐射力成像(MR-ARFI)和磁敏感加权成像(SWI)在体外脑组织中可视化钙化灶的应用,作为磁共振引导聚焦超声(MRgFUS)治疗的规划指标。

材料与方法

将钙化灶植入体外猪脑,并采用SWI、MR-ARFI和计算机断层扫描(CT)进行成像。SWI滤波相位图像使用基于傅里叶展开算法的三维梯度回波(GRE)图像。MR-ARFI脉冲序列使用二维傅里叶变换自旋回波,并在纵向超声束方向上采用重复的双极编码梯度。MR-ARFI检查扫描钙化灶周围脑区的一个子区域(14×10×12 mm)。采用平方和法将这些检查结果合并成一个单一的位移加权图。钙化灶大小估计基于在半高宽处沿±x和±z方向绘制的图像轮廓。

结果

MR-ARFI和SWI均能可视化钙化灶。CT的对比度为150,SWI为12,MR-ARFI为12。CT上的轮廓尺寸为1.35×1.28 mm,SWI上为1.24×1.73 mm,MR-ARFI上为2.45×3.02 mm。MR-ARFI位移随声功率(20 - 80 W)呈线性增加,也随钙化灶大小增加。

结论

SWI滤波相位和MR-ARFI的应用有可能为经颅MRgFUS治疗规划中钙化灶的相关性提供临床指标。

相似文献

3
Adapting MRI acoustic radiation force imaging for in vivo human brain focused ultrasound applications.
Magn Reson Med. 2013 Mar 1;69(3):724-33. doi: 10.1002/mrm.24308. Epub 2012 May 3.
4
Keyhole acceleration for magnetic resonance acoustic radiation force imaging (MR ARFI).
Magn Reson Imaging. 2013 Dec;31(10):1695-703. doi: 10.1016/j.mri.2013.07.011. Epub 2013 Sep 27.
5
In vivo MR acoustic radiation force imaging in the porcine liver.
Med Phys. 2011 Sep;38(9):5081-9. doi: 10.1118/1.3622610.
7
High sensitivity MR acoustic radiation force imaging using transition band balanced steady-state free precession.
Magn Reson Med. 2018 Mar;79(3):1532-1537. doi: 10.1002/mrm.26793. Epub 2017 Jun 20.
8
Multiple-point magnetic resonance acoustic radiation force imaging.
Magn Reson Med. 2019 Feb;81(2):1104-1117. doi: 10.1002/mrm.27477. Epub 2018 Sep 26.
9
Rapid MR-ARFI method for focal spot localization during focused ultrasound therapy.
Magn Reson Med. 2011 Mar;65(3):738-43. doi: 10.1002/mrm.22662. Epub 2010 Nov 16.
10
Magnetic resonance imaging for the exploitation of bubble-enhanced heating by high-intensity focused ultrasound: a feasibility study in ex vivo liver.
Ultrasound Med Biol. 2014 May;40(5):956-64. doi: 10.1016/j.ultrasmedbio.2013.11.019. Epub 2014 Jan 22.

引用本文的文献

1
Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI).
J Magn Reson Imaging. 2025 Jul;62(1):20-39. doi: 10.1002/jmri.29712. Epub 2025 Jan 22.
2
Transcranial focused ultrasound stimulation of cortical and thalamic somatosensory areas in human.
PLoS One. 2023 Jul 21;18(7):e0288654. doi: 10.1371/journal.pone.0288654. eCollection 2023.
3
Perfluorocarbon emulsion enhances MR-ARFI displacement and temperature : Evaluating the response with MRI, NMR, and hydrophone.
Front Oncol. 2023 Jan 13;12:1025481. doi: 10.3389/fonc.2022.1025481. eCollection 2022.
5
Toward volumetric MR thermometry with the MASTER sequence.
IEEE Trans Med Imaging. 2015 Jan;34(1):148-55. doi: 10.1109/TMI.2014.2349912. Epub 2014 Aug 21.

本文引用的文献

1
Adapting MRI acoustic radiation force imaging for in vivo human brain focused ultrasound applications.
Magn Reson Med. 2013 Mar 1;69(3):724-33. doi: 10.1002/mrm.24308. Epub 2012 May 3.
2
Rapid MR-ARFI method for focal spot localization during focused ultrasound therapy.
Magn Reson Med. 2011 Mar;65(3):738-43. doi: 10.1002/mrm.22662. Epub 2010 Nov 16.
4
Future potential of MRI-guided focused ultrasound brain surgery.
Neuroimaging Clin N Am. 2010 Aug;20(3):355-66. doi: 10.1016/j.nic.2010.05.003.
5
Optimization of encoding gradients for MR-ARFI.
Magn Reson Med. 2010 Apr;63(4):1050-8. doi: 10.1002/mrm.22299.
6
Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients.
Neurosurgery. 2010 Feb;66(2):323-32; discussion 332. doi: 10.1227/01.NEU.0000360379.95800.2F.
7
Intracranial calcifications on CT.
Diagn Interv Radiol. 2010 Dec;16(4):263-9. doi: 10.4261/1305-3825.DIR.2626-09.1. Epub 2009 Dec 18.
8
Identification of calcification with MRI using susceptibility-weighted imaging: a case study.
J Magn Reson Imaging. 2009 Jan;29(1):177-82. doi: 10.1002/jmri.21617.
9
Magnetic resonance acoustic radiation force imaging.
Med Phys. 2008 Aug;35(8):3748-58. doi: 10.1118/1.2956712.
10
A modified Fourier-based phase unwrapping algorithm with an application to MRI venography.
J Magn Reson Imaging. 2008 Mar;27(3):649-52. doi: 10.1002/jmri.21230.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验