ICM-Institut du Cerveau et de la Moelle épinière, CENIR-Centre de NeuroImagerie de Recherche, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'hôpital, 75013 Paris, France; CRICM-Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Université Pierre et Marie Curie (Paris 6)/INSERM UMR_S975/CNRS UMR 7225, Groupe Hospitalier Pitié-Salpêtrière, bâtiment ICM, 47 boulevard de l'hôpital, 75013 Paris, France.
Magn Reson Imaging. 2013 Dec;31(10):1695-703. doi: 10.1016/j.mri.2013.07.011. Epub 2013 Sep 27.
MR ARFI measures the displacement induced by the ultrasonic radiation force and provides the location of the focal spot without significant heating effects. Displacements maps obtained with MR ARFI provide an indirect estimation of the acoustic beam intensity at the target. This measure is essential for dose estimation prior to focused ultrasound treatments (FUS) and adaptive focusing procedures of MR-guided transcranial and transribs FUS. In the latter case, the beam correction is achieved by maximizing the displacement at focus. A significant number of serial MR ARFI images are required and thus, a partial k-space updating method, such as keyhole appears as a method of choice. The purpose of this work is to demonstrate via simulations and experiments the efficiency of the keyhole technique combined with a two-dimensional spin-echo MR ARFI pulse sequence. The method was implemented in an ex vivo calf brain taking advantage of the a priori knowledge of the focal spot profile. The coincidence of the phase-encoding axis with the longest axis of the focal spot makes the best use of the technique. Our approach rapidly provides the focal spot localization with accuracy, and with a substantial increase to the signal-to-noise ratio, while reducing ultrasound energy needed during MR-guided adaptive focusing procedures.
磁共振弹性断层成像(MR ARFI)测量超声辐射力引起的位移,并提供焦点位置,而不会产生明显的加热效应。MR ARFI 获得的位移图提供了目标处声束强度的间接估计。这一测量对于聚焦超声治疗(FUS)前的剂量估计以及磁共振引导颅内外 FUS 的自适应聚焦程序至关重要。在后一种情况下,通过将焦点处的位移最大化来实现波束校正。需要大量的连续 MR ARFI 图像,因此,小孔(keyhole)等部分 k 空间更新方法成为首选方法。本工作旨在通过模拟和实验证明小孔技术与二维自旋回波 MR ARFI 脉冲序列相结合的效率。该方法在离体小牛脑上得到了实现,利用了焦点轮廓的先验知识。相位编码轴与焦点最长轴的重合使得该技术得到了最佳利用。我们的方法快速提供焦点定位的准确性,并大大提高了信噪比,同时减少了磁共振引导自适应聚焦程序所需的超声能量。