Suppr超能文献

通过表面展示粘性儿茶酚胺部分制备粘性大肠杆菌。

Preparation of sticky Escherichia coli through surface display of an adhesive catecholamine moiety.

机构信息

Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.

出版信息

Appl Environ Microbiol. 2014 Jan;80(1):43-53. doi: 10.1128/AEM.02223-13. Epub 2013 Oct 11.

Abstract

Mussels attach to virtually all types of inorganic and organic surfaces in aqueous environments, and catecholamines composed of 3,4-dihydroxy-l-phenylalanine (DOPA), lysine, and histidine in mussel adhesive proteins play a key role in the robust adhesion. DOPA is an unusual catecholic amino acid, and its side chain is called catechol. In this study, we displayed the adhesive moiety of DOPA-histidine on Escherichia coli surfaces using outer membrane protein W as an anchoring motif for the first time. Localization of catecholamines on the cell surface was confirmed by Western blot and immunofluorescence microscopy. Furthermore, cell-to-cell cohesion (i.e., cellular aggregation) induced by the displayed catecholamine and synthesis of gold nanoparticles on the cell surface support functional display of adhesive catecholamines. The engineered E. coli exhibited significant adhesion onto various material surfaces, including silica and glass microparticles, gold, titanium, silicon, poly(ethylene terephthalate), poly(urethane), and poly(dimethylsiloxane). The uniqueness of this approach utilizing the engineered sticky E. coli is that no chemistry for cell attachment are necessary, and the ability of spontaneous E. coli attachment allows one to immobilize the cells on challenging material surfaces such as synthetic polymers. Therefore, we envision that mussel-inspired catecholamine yielded sticky E. coli that can be used as a new type of engineered microbe for various emerging fields, such as whole living cell attachment on versatile material surfaces, cell-to-cell communication systems, and many others.

摘要

贻贝几乎可以附着在水生态环境中的所有类型的无机和有机表面上,而贻贝黏附蛋白中的儿茶酚胺由 3,4-二羟基-l-苯丙氨酸(DOPA)、赖氨酸和组氨酸组成,在强大的黏附中起着关键作用。DOPA 是一种不寻常的儿茶酚氨基酸,其侧链称为儿茶酚。在这项研究中,我们首次使用外膜蛋白 W 作为锚定基序,在大肠杆菌表面展示 DOPA-组氨酸的黏附结构域。通过 Western blot 和免疫荧光显微镜证实了细胞表面儿茶酚胺的定位。此外,通过展示儿茶酚胺诱导的细胞间黏附和细胞表面上金纳米粒子的合成,支持黏附性儿茶酚胺的功能展示。所构建的大肠杆菌对各种材料表面(包括二氧化硅和玻璃微球、金、钛、硅、聚对苯二甲酸乙二醇酯、聚(氨基甲酸酯)和聚二甲基硅氧烷)表现出显著的黏附性。利用这种工程粘性大肠杆菌的方法的独特之处在于,不需要用于细胞附着的化学物质,并且大肠杆菌自发附着的能力允许将细胞固定在具有挑战性的材料表面上,如合成聚合物。因此,我们设想贻贝启发的儿茶酚胺产生的粘性大肠杆菌可以用作各种新兴领域的新型工程微生物,例如在各种材料表面上附着完整的活细胞、细胞间通信系统等。

相似文献

5
Novel Bacterial Surface Display System Based on the Protein MipA.基于蛋白 MipA 的新型细菌表面展示系统。
J Microbiol Biotechnol. 2020 Jul 28;30(7):1097-1103. doi: 10.4014/jmb.2001.01053.

引用本文的文献

本文引用的文献

2
Cellulosic ethanol production by combination of cellulase-displaying yeast cells.利用展示纤维素酶的酵母细胞生产纤维素乙醇。
Enzyme Microb Technol. 2012 Dec 10;51(6-7):366-72. doi: 10.1016/j.enzmictec.2012.08.005. Epub 2012 Aug 23.
5
Autodisplay of functional CYP106A2 in Escherichia coli.大肠杆菌中功能性 CYP106A2 的自动表达。
J Biotechnol. 2012 Oct 15;161(2):104-12. doi: 10.1016/j.jbiotec.2012.02.018. Epub 2012 Mar 8.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验