Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
Microb Biotechnol. 2019 Jul;12(4):611-619. doi: 10.1111/1751-7915.13340. Epub 2018 Nov 21.
Bacterial cellulose is a strong and flexible biomaterial produced at high yields by Acetobacter species and has applications in health care, biotechnology and electronics. Naturally, bacterial cellulose grows as a large unstructured polymer network around the bacteria that produce it, and tools to enable these bacteria to respond to different locations are required to grow more complex structured materials. Here, we introduce engineered cell-to-cell communication into a bacterial cellulose-producing strain of Komagataeibacter rhaeticus to enable different cells to detect their proximity within growing material and trigger differential gene expression in response. Using synthetic biology tools, we engineer Sender and Receiver strains of K. rhaeticus to produce and respond to the diffusible signalling molecule, acyl-homoserine lactone. We demonstrate that communication can occur both within and between growing pellicles and use this in a boundary detection experiment, where spliced and joined pellicles sense and reveal their original boundary. This work sets the basis for synthetic cell-to-cell communication within bacterial cellulose and is an important step forward for pattern formation within engineered living materials.
细菌纤维素是一种由醋杆菌属产生的高强度、高柔韧性的生物材料,在医疗保健、生物技术和电子领域有广泛应用。天然状态下,细菌纤维素作为一个大型无组织的聚合物网络围绕着产生它的细菌生长,为了生长更复杂的结构材料,需要工具来使这些细菌能够对不同位置做出响应。在这里,我们将工程化的细胞间通讯引入到产细菌纤维素的Komagataeibacter rhaeticus 菌株中,使不同的细胞能够检测到它们在生长物质中的接近程度,并做出相应的差异基因表达反应。我们使用合成生物学工具,构建了产和响应可扩散信号分子酰高丝氨酸内酯的 K. rhaeticus 的发送者和接收者菌株。我们证明了这种通讯可以在生长的菌膜内和菌膜之间发生,并在边界检测实验中使用它,其中拼接的菌膜可以感知并揭示它们的原始边界。这项工作为细菌纤维素内的合成细胞间通讯奠定了基础,也是工程化活体材料中模式形成的重要一步。