Suppr超能文献

用微载体的生化和生物力学特性来设计干细胞命运。

Engineering stem cell fate with biochemical and biomechanical properties of microcarriers.

机构信息

Dept. of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL.

出版信息

Biotechnol Prog. 2013 Nov-Dec;29(6):1354-66. doi: 10.1002/btpr.1825. Epub 2013 Oct 23.

Abstract

Microcarriers have been widely used for various biotechnology applications because of their high scale-up potential, high reproducibility in regulating cellular behavior, and well-documented compliance with current Good Manufacturing Practices (cGMP). Recently, microcarriers have been emerging as a novel approach for stem cell expansion and differentiation, enabling potential scale-up of stem cell-derived products in large bioreactors. This review summarizes recent advances of using microcarriers in mesenchymal stem cell (MSC) and pluripotent stem cell (PSC) cultures. From the reported data, efficient expansion and differentiation of stem cells on microcarriers rely on their ability to modulate cell shape (i.e. round or spreading) and cell organization (i.e. aggregate size). Nonetheless, current screening of microcarriers remains empirical, and accurate understanding of how stem cells interact with microcarriers still remains unknown. This review suggests that accurate characterization of biochemical and biomechanical properties of microcarriers is required to fully exploit their potential in regulating stem cell fate decision. Due to the variety of microcarriers, such detailed analyses should lead to the rational design of application-specific microcarriers, enabling the exploitation of reproducible effects for large scale biomedical applications.

摘要

微载体由于其高放大潜力、在调节细胞行为方面的高重现性以及与现行良好生产规范 (cGMP) 的良好一致性,已被广泛应用于各种生物技术应用中。最近,微载体作为一种新型的干细胞扩增和分化方法而崭露头角,能够在大型生物反应器中潜在地上调干细胞衍生产品的规模。本文综述了微载体在间充质干细胞 (MSC) 和多能干细胞 (PSC) 培养中的最新进展。从报告的数据来看,干细胞在微载体上的有效扩增和分化依赖于它们调节细胞形状(即圆形或展开)和细胞组织(即聚集体大小)的能力。尽管如此,目前微载体的筛选仍然是经验性的,对于干细胞与微载体相互作用的准确理解仍然未知。本文综述表明,需要准确表征微载体的生化和生物力学特性,以充分发挥其在调节干细胞命运决定中的潜力。由于微载体种类繁多,这种详细的分析应该导致特定应用的微载体的合理设计,从而实现可重复的效果,用于大规模的生物医学应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验