Suppr超能文献

通过非负矩阵分解识别重叠社区以及枢纽和异常值。

Identifying overlapping communities as well as hubs and outliers via nonnegative matrix factorization.

机构信息

1] School of Computer Science and Technology, Tianjin University, Tianjin 300072, China [2] State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China.

出版信息

Sci Rep. 2013 Oct 21;3:2993. doi: 10.1038/srep02993.

Abstract

Community detection is important for understanding networks. Previous studies observed that communities are not necessarily disjoint and might overlap. It is also agreed that some outlier vertices participate in no community, and some hubs in a community might take more important roles than others. Each of these facts has been independently addressed in previous work. But there is no algorithm, to our knowledge, that can identify these three structures altogether. To overcome this limitation, we propose a novel model where vertices are measured by their centrality in communities, and define the identification of overlapping communities, hubs, and outliers as an optimization problem, calculated by nonnegative matrix factorization. We test this method on various real networks, and compare it with several competing algorithms. The experimental results not only demonstrate its ability of identifying overlapping communities, hubs, and outliers, but also validate its superior performance in terms of clustering quality.

摘要

社区发现对于理解网络很重要。先前的研究观察到社区不一定是不相交的,它们可能会重叠。人们还一致认为,一些异常点顶点不参与任何社区,而社区中的一些集线器可能比其他集线器扮演更重要的角色。这些事实中的每一个都在先前的工作中被独立地解决了。但是,据我们所知,还没有一种算法可以同时识别这三种结构。为了克服这一限制,我们提出了一种新的模型,其中顶点通过它们在社区中的中心度来衡量,并将重叠社区、集线器和异常点的识别定义为一个优化问题,通过非负矩阵分解来计算。我们在各种真实网络上测试了这种方法,并将其与几种竞争算法进行了比较。实验结果不仅证明了它识别重叠社区、集线器和异常点的能力,还验证了它在聚类质量方面的优越性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c9/3797436/5374f2e8fa77/srep02993-f1.jpg

相似文献

6
Overlapping community detection in complex networks using symmetric binary matrix factorization.使用对称二元矩阵分解在复杂网络中进行重叠社区检测。
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062803. doi: 10.1103/PhysRevE.87.062803. Epub 2013 Jun 12.
7
Convex nonnegative matrix factorization with manifold regularization.具有流形正则化的凸非负矩阵分解。
Neural Netw. 2015 Mar;63:94-103. doi: 10.1016/j.neunet.2014.11.007. Epub 2014 Dec 4.
10
Nonlinear Hyperspectral Unmixing With Robust Nonnegative Matrix Factorization.基于鲁棒非负矩阵分解的非线性高光谱解混
IEEE Trans Image Process. 2015 Dec;24(12):4810-9. doi: 10.1109/TIP.2015.2468177. Epub 2015 Aug 13.

引用本文的文献

1
Connectivity analyses for task-based fMRI.基于任务的 fMRI 的连通性分析。
Phys Life Rev. 2024 Jul;49:139-156. doi: 10.1016/j.plrev.2024.04.012. Epub 2024 Apr 30.
3
Modeling and interpreting mesoscale network dynamics.介观网络动力学的建模与解释。
Neuroimage. 2018 Oct 15;180(Pt B):337-349. doi: 10.1016/j.neuroimage.2017.06.029. Epub 2017 Jun 20.
4
Discovering SIFIs in Interbank Communities.在银行间群体中发现具有系统重要性的金融机构。
PLoS One. 2016 Dec 21;11(12):e0167781. doi: 10.1371/journal.pone.0167781. eCollection 2016.
5
Finding Communities by Their Centers.通过社区中心寻找社区
Sci Rep. 2016 Apr 7;6:24017. doi: 10.1038/srep24017.
6
Emergent complex network geometry.紧急复杂网络几何学
Sci Rep. 2015 May 18;5:10073. doi: 10.1038/srep10073.

本文引用的文献

1
Exploring the structural regularities in networks.探索网络中的结构规律。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 2):056111. doi: 10.1103/PhysRevE.84.056111. Epub 2011 Nov 28.
2
Efficient and principled method for detecting communities in networks.用于检测网络中社区的高效且有原则的方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 2):036103. doi: 10.1103/PhysRevE.84.036103. Epub 2011 Sep 8.
3
Overlapping community detection using Bayesian non-negative matrix factorization.使用贝叶斯非负矩阵分解的重叠社区检测
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jun;83(6 Pt 2):066114. doi: 10.1103/PhysRevE.83.066114. Epub 2011 Jun 22.
4
Community extraction for social networks.社交网络的社区抽取。
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7321-6. doi: 10.1073/pnas.1006642108. Epub 2011 Apr 18.
5
Stochastic blockmodels and community structure in networks.网络中的随机块模型与社区结构
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016107. doi: 10.1103/PhysRevE.83.016107. Epub 2011 Jan 21.
6
Link communities reveal multiscale complexity in networks.链接社区揭示了网络的多尺度复杂性。
Nature. 2010 Aug 5;466(7307):761-4. doi: 10.1038/nature09182. Epub 2010 Jun 20.
7
Simple probabilistic algorithm for detecting community structure.用于检测社区结构的简单概率算法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 2):036111. doi: 10.1103/PhysRevE.79.036111. Epub 2009 Mar 20.
8
Finding community structure in networks using the eigenvectors of matrices.利用矩阵特征向量在网络中寻找社区结构。
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036104. doi: 10.1103/PhysRevE.74.036104. Epub 2006 Sep 11.
9
Modularity and community structure in networks.网络中的模块化与群落结构。
Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82. doi: 10.1073/pnas.0601602103. Epub 2006 May 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验