Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeautics, University of Pennsylvania, Philadelphia, PA 19104, USA.
Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Neuroimage. 2018 Oct 15;180(Pt B):337-349. doi: 10.1016/j.neuroimage.2017.06.029. Epub 2017 Jun 20.
Recent advances in brain imaging techniques, measurement approaches, and storage capacities have provided an unprecedented supply of high temporal resolution neural data. These data present a remarkable opportunity to gain a mechanistic understanding not just of circuit structure, but also of circuit dynamics, and its role in cognition and disease. Such understanding necessitates a description of the raw observations, and a delineation of computational models and mathematical theories that accurately capture fundamental principles behind the observations. Here we review recent advances in a range of modeling approaches that embrace the temporally-evolving interconnected structure of the brain and summarize that structure in a dynamic graph. We describe recent efforts to model dynamic patterns of connectivity, dynamic patterns of activity, and patterns of activity atop connectivity. In the context of these models, we review important considerations in statistical testing, including parametric and non-parametric approaches. Finally, we offer thoughts on careful and accurate interpretation of dynamic graph architecture, and outline important future directions for method development.
近年来,脑成像技术、测量方法和存储容量的进步为我们提供了前所未有的高时间分辨率神经数据。这些数据为我们提供了一个极好的机会,不仅可以深入了解电路结构,还可以了解电路动态及其在认知和疾病中的作用。为了实现这种理解,我们需要对原始观测进行描述,并对能够准确捕捉观测背后基本原理的计算模型和数学理论进行阐述。在这里,我们回顾了一系列建模方法的最新进展,这些方法采用了随时间演变的大脑互联结构,并以动态图的形式对其进行了总结。我们描述了最近在建模连接的动态模式、活动的动态模式以及连接上的活动模式方面的努力。在这些模型的背景下,我们回顾了统计测试中的一些重要考虑因素,包括参数和非参数方法。最后,我们对动态图结构的仔细准确解释提出了一些看法,并概述了未来方法发展的重要方向。