Suppr超能文献

介观网络动力学的建模与解释。

Modeling and interpreting mesoscale network dynamics.

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeautics, University of Pennsylvania, Philadelphia, PA 19104, USA.

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Neuroimage. 2018 Oct 15;180(Pt B):337-349. doi: 10.1016/j.neuroimage.2017.06.029. Epub 2017 Jun 20.

Abstract

Recent advances in brain imaging techniques, measurement approaches, and storage capacities have provided an unprecedented supply of high temporal resolution neural data. These data present a remarkable opportunity to gain a mechanistic understanding not just of circuit structure, but also of circuit dynamics, and its role in cognition and disease. Such understanding necessitates a description of the raw observations, and a delineation of computational models and mathematical theories that accurately capture fundamental principles behind the observations. Here we review recent advances in a range of modeling approaches that embrace the temporally-evolving interconnected structure of the brain and summarize that structure in a dynamic graph. We describe recent efforts to model dynamic patterns of connectivity, dynamic patterns of activity, and patterns of activity atop connectivity. In the context of these models, we review important considerations in statistical testing, including parametric and non-parametric approaches. Finally, we offer thoughts on careful and accurate interpretation of dynamic graph architecture, and outline important future directions for method development.

摘要

近年来,脑成像技术、测量方法和存储容量的进步为我们提供了前所未有的高时间分辨率神经数据。这些数据为我们提供了一个极好的机会,不仅可以深入了解电路结构,还可以了解电路动态及其在认知和疾病中的作用。为了实现这种理解,我们需要对原始观测进行描述,并对能够准确捕捉观测背后基本原理的计算模型和数学理论进行阐述。在这里,我们回顾了一系列建模方法的最新进展,这些方法采用了随时间演变的大脑互联结构,并以动态图的形式对其进行了总结。我们描述了最近在建模连接的动态模式、活动的动态模式以及连接上的活动模式方面的努力。在这些模型的背景下,我们回顾了统计测试中的一些重要考虑因素,包括参数和非参数方法。最后,我们对动态图结构的仔细准确解释提出了一些看法,并概述了未来方法发展的重要方向。

相似文献

1
Modeling and interpreting mesoscale network dynamics.介观网络动力学的建模与解释。
Neuroimage. 2018 Oct 15;180(Pt B):337-349. doi: 10.1016/j.neuroimage.2017.06.029. Epub 2017 Jun 20.
5
Concepts and principles in the analysis of brain networks.脑网络分析中的概念和原理。
Ann N Y Acad Sci. 2011 Apr;1224:126-146. doi: 10.1111/j.1749-6632.2010.05947.x.
6
Distinct Global Brain Dynamics and Spatiotemporal Organization of the Salience Network.突显网络独特的全脑动力学和时空组织
PLoS Biol. 2016 Jun 7;14(6):e1002469. doi: 10.1371/journal.pbio.1002469. eCollection 2016 Jun.
9
Graph theoretical modeling of brain connectivity.脑连接的图论建模。
Curr Opin Neurol. 2010 Aug;23(4):341-50. doi: 10.1097/WCO.0b013e32833aa567.

引用本文的文献

4
Theoretical foundations of studying criticality in the brain.研究大脑临界性的理论基础。
Netw Neurosci. 2022 Oct 1;6(4):1148-1185. doi: 10.1162/netn_a_00269. eCollection 2022.
6
Towards a biologically annotated brain connectome.迈向具有生物学注释的脑连接组学。
Nat Rev Neurosci. 2023 Dec;24(12):747-760. doi: 10.1038/s41583-023-00752-3. Epub 2023 Oct 17.
7
Increased flexibility of brain dynamics in patients with multiple sclerosis.多发性硬化症患者大脑动力学灵活性增加。
Brain Commun. 2023 May 3;5(3):fcad143. doi: 10.1093/braincomms/fcad143. eCollection 2023.
8

本文引用的文献

2
Evolution of brain network dynamics in neurodevelopment.神经发育过程中脑网络动力学的演变
Netw Neurosci. 2017 Feb 1;1(1):14-30. doi: 10.1162/NETN_a_00001. eCollection 2017.
5
Brain state flexibility accompanies motor-skill acquisition.大脑状态的灵活性伴随着运动技能的获得。
Neuroimage. 2018 May 1;171:135-147. doi: 10.1016/j.neuroimage.2017.12.093. Epub 2018 Jan 6.
8
Dynamic graph metrics: Tutorial, toolbox, and tale.动态图度量:教程、工具箱和故事。
Neuroimage. 2018 Oct 15;180(Pt B):417-427. doi: 10.1016/j.neuroimage.2017.06.081. Epub 2017 Jul 8.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验