Suppr超能文献

使用贝叶斯非负矩阵分解的重叠社区检测

Overlapping community detection using Bayesian non-negative matrix factorization.

作者信息

Psorakis Ioannis, Roberts Stephen, Ebden Mark, Sheldon Ben

机构信息

Pattern Analysis and Machine Learning Research Group, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jun;83(6 Pt 2):066114. doi: 10.1103/PhysRevE.83.066114. Epub 2011 Jun 22.

Abstract

Identifying overlapping communities in networks is a challenging task. In this work we present a probabilistic approach to community detection that utilizes a Bayesian non-negative matrix factorization model to extract overlapping modules from a network. The scheme has the advantage of soft-partitioning solutions, assignment of node participation scores to modules, and an intuitive foundation. We present the performance of the method against a variety of benchmark problems and compare and contrast it to several other algorithms for community detection.

摘要

识别网络中的重叠社区是一项具有挑战性的任务。在这项工作中,我们提出了一种用于社区检测的概率方法,该方法利用贝叶斯非负矩阵分解模型从网络中提取重叠模块。该方案具有软划分解决方案、为模块分配节点参与分数以及直观基础的优点。我们展示了该方法在各种基准问题上的性能,并将其与其他几种社区检测算法进行比较和对比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验