Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States.
ACS Nano. 2013 Nov 26;7(11):9836-50. doi: 10.1021/nn403435z. Epub 2013 Oct 23.
Amplitude modulation atomic force microscopy (AM-AFM) is one of the most popular AFM modes because of the reduced tip-sample interaction, compared to contact mode AFM, and the ability to acquire high-resolution images while interrogating the sample's material composition through phase imaging. Despite the reduced tip-sample interaction, tip and sample wear can occur through gradual atomic scale processes that can significantly accumulate due to the high frequency of the tip-sample interaction and through high intermittent contact stresses. Starting from existing analytical formulations, we introduce a method for selecting an appropriate probe and free oscillation amplitude that avoids exceeding a critical contact stress to minimize tip/sample damage. The approach is presented for the case of both a Hertzian- and a Derjaguin-Müller-Toporov-like tip-sample contact. Stress maps and related simplified formulas are provided that enable one to determine allowable free oscillation amplitudes to stay below a target contact stress for given cantilever and sample parameters (combined into a single "cantilever-sample constant" that we introduce). Experimental results show how sharp silicon tips, either uncoated or coated with diamond-like carbon and silicon nitride, interacting with a hard and wear-resistant sample (ultrananocrystalline diamond) can be preserved while attaining high-quality AM-AFM images by using our proposed scheme. We also show that using our analysis to select parameters that exceed the target contact stress indeed leads to significant tip wear. This method provides AM-AFM users with a better understanding of contact stresses and enables selection of AM-AFM cantilevers and experimental parameters that preserve the tip for long periods of use and prevents the sample from damage.
振幅调制原子力显微镜(AM-AFM)是最受欢迎的 AFM 模式之一,因为与接触模式 AFM 相比,针尖-样品相互作用降低,并且能够通过相位成像来获取高分辨率图像,同时检测样品的材料组成。尽管针尖-样品相互作用降低,但通过逐渐的原子尺度过程仍然会发生针尖和样品的磨损,这种磨损由于针尖-样品相互作用的高频和间歇性接触应力的高,可能会显著积累。从现有的分析公式出发,我们引入了一种选择合适探针和自由振荡幅度的方法,以避免超过临界接触应力,从而最大限度地减少针尖/样品的损坏。该方法适用于赫兹和德加古林-穆勒-托波洛夫型针尖-样品接触两种情况。提供了应力图和相关简化公式,使人们能够确定允许的自由振荡幅度,以保持在目标接触应力以下,对于给定的悬臂梁和样品参数(组合成我们引入的单个“悬臂梁-样品常数”)。实验结果表明,在使用我们提出的方案时,如何通过使用未涂层或涂有类金刚石碳和氮化硅的尖锐硅针尖与硬且耐磨的样品(纳米晶金刚石)相互作用,同时获得高质量的 AM-AFM 图像,从而保护未涂层或涂有类金刚石碳和氮化硅的尖锐硅针尖。我们还表明,使用我们的分析来选择超过目标接触应力的参数确实会导致针尖明显磨损。该方法为 AM-AFM 用户提供了对接触应力的更好理解,并能够选择 AM-AFM 悬臂梁和实验参数,从而延长针尖的使用寿命,并防止样品损坏。