Suppr超能文献

凋亡调节蛋白 Bcl-xL 和白喉毒素转位结构域的膜插入途径比较。

Comparison of membrane insertion pathways of the apoptotic regulator Bcl-xL and the diphtheria toxin translocation domain.

机构信息

Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States.

出版信息

Biochemistry. 2013 Nov 12;52(45):7901-9. doi: 10.1021/bi400926k. Epub 2013 Nov 1.

Abstract

The diphtheria toxin translocation domain (T-domain) and the apoptotic repressor Bcl-xL are membrane proteins that adopt their final topology by switching folds from a water-soluble to a membrane-inserted state. While the exact molecular mechanisms of this transition are not clearly understood in either case, the similarity in the structures of soluble states of the T-domain and Bcl-xL led to the suggestion that their membrane insertion pathways will be similar, as well. Previously, we have applied an array of spectroscopic methods to characterize the pH-triggered refolding and membrane insertion of the diphtheria toxin T-domain. Here, we use the same set of methods to describe the membrane insertion pathway of Bcl-xL, which allows us to make a direct comparison between both systems with respect to the thermodynamic stability in solution, pH-dependent membrane association, and transmembrane insertion. Thermal denaturation measured by circular dichroism indicates that, unlike the T-domain, Bcl-xL does not undergo a pH-dependent destabilization of the structure. Förster resonance energy transfer measurements demonstrate that Bcl-xL undergoes reversible membrane association modulated by the presence of anionic lipids, suggesting that formation of the membrane-competent form occurs close to the membrane interface. Membrane insertion of the main hydrophobic helical hairpin of Bcl-xL, α5-α6, was studied by site-selective attachment of environment-sensitive dye NBD. In contrast to the insertion of the corresponding TH8-TH9 hairpin into the T-domain, insertion of α5-α6 was found not to depend strongly on the presence of anionic lipids. Taken together, our results indicate that while Bcl-xL and the T-domain share structural similarities, their modes of conformational switching and membrane insertion pathways are distinctly different.

摘要

白喉毒素转位结构域(T 结构域)和凋亡抑制剂 Bcl-xL 都是膜蛋白,它们通过从水溶性到膜插入状态的折叠转换来采用最终拓扑结构。尽管在这两种情况下,这种转变的确切分子机制都不是很清楚,但 T 结构域和 Bcl-xL 的可溶性状态结构的相似性导致人们提出它们的膜插入途径也将相似。以前,我们应用一系列光谱方法来描述白喉毒素 T 结构域的 pH 触发重折叠和膜插入。在这里,我们使用相同的方法来描述 Bcl-xL 的膜插入途径,这使我们能够直接比较两个系统在溶液中的热力学稳定性、pH 依赖性膜结合和跨膜插入方面的情况。圆二色性测量的热变性表明,与 T 结构域不同,Bcl-xL 不会经历结构的 pH 依赖性失稳。荧光共振能量转移测量表明,Bcl-xL 经历可逆的膜结合,受阴离子脂质的调节,这表明形成膜有效形式的过程发生在接近膜界面的地方。通过环境敏感染料 NBD 的选择性附着研究了 Bcl-xL 的主要疏水性发夹螺旋α5-α6 的膜插入。与相应的 TH8-TH9 发夹插入 T 结构域的插入情况相反,发现α5-α6 的插入不强烈依赖于阴离子脂质的存在。总之,我们的结果表明,尽管 Bcl-xL 和 T 结构域具有结构相似性,但它们的构象转换模式和膜插入途径明显不同。

相似文献

1
2
Thermodynamics of Membrane Insertion and Refolding of the Diphtheria Toxin T-Domain.
J Membr Biol. 2015 Jun;248(3):383-94. doi: 10.1007/s00232-014-9734-0. Epub 2014 Oct 4.
3
pH-triggered conformational switching of the diphtheria toxin T-domain: the roles of N-terminal histidines.
J Mol Biol. 2013 Aug 9;425(15):2752-64. doi: 10.1016/j.jmb.2013.04.030. Epub 2013 May 3.
4
Acid destabilization of the solution conformation of Bcl-xL does not drive its pH-dependent insertion into membranes.
Protein Sci. 2006 Feb;15(2):248-57. doi: 10.1110/ps.051807706. Epub 2005 Dec 29.
6
Lipid-modulation of membrane insertion and refolding of the apoptotic inhibitor Bcl-xL.
Biochim Biophys Acta Proteins Proteom. 2019 Jul-Aug;1867(7-8):691-700. doi: 10.1016/j.bbapap.2019.04.006. Epub 2019 Apr 18.
8
Evidence that membrane insertion of the cytosolic domain of Bcl-xL is governed by an electrostatic mechanism.
J Mol Biol. 2006 Jun 16;359(4):1045-58. doi: 10.1016/j.jmb.2006.03.052. Epub 2006 Apr 6.
9
Conformational switching, refolding and membrane insertion of the diphtheria toxin translocation domain.
Methods Enzymol. 2021;649:341-370. doi: 10.1016/bs.mie.2020.12.016. Epub 2021 Feb 2.

引用本文的文献

1
Constant-pH MD simulations of the protonation-triggered conformational switching in diphtheria toxin translocation domain.
Biophys J. 2024 Dec 17;123(24):4266-4273. doi: 10.1016/j.bpj.2024.08.023. Epub 2024 Aug 30.
2
Fluorescent Probes and Quenchers in Studies of Protein Folding and Protein-Lipid Interactions.
Chem Rec. 2024 Feb;24(2):e202300232. doi: 10.1002/tcr.202300232. Epub 2023 Sep 11.
3
Membrane interactions of apoptotic inhibitor Bcl-xL: What can be learned using fluorescence spectroscopy.
BBA Adv. 2023 Jan 13;3:100076. doi: 10.1016/j.bbadva.2023.100076. eCollection 2023.
4
Spectroscopic evidence of tetanus toxin translocation domain bilayer-induced refolding and insertion.
Biophys J. 2021 Nov 2;120(21):4763-4776. doi: 10.1016/j.bpj.2021.09.030. Epub 2021 Sep 21.
5
High-resolution analysis of the conformational transition of pro-apoptotic Bak at the lipid membrane.
EMBO J. 2021 Oct 18;40(20):e107159. doi: 10.15252/embj.2020107159. Epub 2021 Sep 15.
6
Lipids modulate the BH3-independent membrane targeting and activation of BAX and Bcl-xL.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2025834118.
7
Conformational switching, refolding and membrane insertion of the diphtheria toxin translocation domain.
Methods Enzymol. 2021;649:341-370. doi: 10.1016/bs.mie.2020.12.016. Epub 2021 Feb 2.
8
Expanding MPEx Hydropathy Analysis to Account for Electrostatic Contributions to Protein Interactions with Anionic Membranes.
J Membr Biol. 2021 Feb;254(1):109-117. doi: 10.1007/s00232-021-00170-5. Epub 2021 Feb 10.
9
Targeting Acidic Diseased Tissues by pH-Triggered Membrane-Associated Peptide Folding.
Front Bioeng Biotechnol. 2020 Apr 28;8:335. doi: 10.3389/fbioe.2020.00335. eCollection 2020.

本文引用的文献

2
pH-triggered conformational switching of the diphtheria toxin T-domain: the roles of N-terminal histidines.
J Mol Biol. 2013 Aug 9;425(15):2752-64. doi: 10.1016/j.jmb.2013.04.030. Epub 2013 May 3.
3
Crucial role of H322 in folding of the diphtheria toxin T-domain into the open-channel state.
Biochemistry. 2013 May 21;52(20):3457-63. doi: 10.1021/bi400249f. Epub 2013 May 9.
4
Mechanisms of action of Bcl-2 family proteins.
Cold Spring Harb Perspect Biol. 2013 Apr 1;5(4):a008714. doi: 10.1101/cshperspect.a008714.
5
The secrets of the Bcl-2 family.
Cell Death Differ. 2012 Nov;19(11):1733-40. doi: 10.1038/cdd.2012.105. Epub 2012 Aug 31.
6
Replacement of C-terminal histidines uncouples membrane insertion and translocation in diphtheria toxin T-domain.
Biophys J. 2011 Nov 16;101(10):L41-3. doi: 10.1016/j.bpj.2011.10.018. Epub 2011 Nov 15.
9
Fluorescence spectroscopy in thermodynamic and kinetic analysis of pH-dependent membrane protein insertion.
Methods Enzymol. 2009;466:19-42. doi: 10.1016/S0076-6879(09)66002-X. Epub 2009 Nov 13.
10
Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol.
Cell. 2011 Apr 1;145(1):104-16. doi: 10.1016/j.cell.2011.02.034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验