Suppr超能文献

MC1R 基因型作为早发性黑色素瘤的预测因子,与自我报告和医生测量的传统危险因素相比:一项澳大利亚病例对照家族研究。

MC1R genotype as a predictor of early-onset melanoma, compared with self-reported and physician-measured traditional risk factors: an Australian case-control-family study.

出版信息

BMC Cancer. 2013 Sep 4;13:406. doi: 10.1186/1471-2407-13-406.

Abstract

BACKGROUND

Melanocortin-1 receptor (MC1R) gene variants are very common and are associated with melanoma risk, but their contribution to melanoma risk prediction compared with traditional risk factors is unknown. We aimed to 1) evaluate the separate and incremental contribution of MC1R genotype to prediction of early-onset melanoma, and compare this with the contributions of physician-measured and self-reported traditional risk factors, and 2) develop risk prediction models that include MC1R, and externally validate these models using an independent dataset from a genetically similar melanoma population.

METHODS

Using data from an Australian population-based, case-control-family study, we included 413 case and 263 control participants with sequenced MC1R genotype, clinical skin examination and detailed questionnaire. We used unconditional logistic regression to estimate predicted probabilities of melanoma. Results were externally validated using data from a similar study in England.

RESULTS

When added to a base multivariate model containing only demographic factors, MC1R genotype improved the area under the receiver operating characteristic curve (AUC) by 6% (from 0.67 to 0.73; P < 0.001) and improved the quartile classification by a net 26% of participants. In a more extensive multivariate model, the factors that contributed significantly to the AUC were MC1R genotype, number of nevi and previous non-melanoma skin cancer; the AUC was 0.78 (95% CI 0.75-0.82) for the model with self-reported nevi and 0.83 (95% CI 0.80-0.86) for the model with physician-counted nevi. Factors that did not further contribute were sun and sunbed exposure and pigmentation characteristics. Adding MC1R to a model containing pigmentation characteristics and other self-reported risk factors increased the AUC by 2.1% (P = 0.01) and improved the quartile classification by a net 10% (95% CI 1-18%, P = 0.03).

CONCLUSIONS

Although MC1R genotype is strongly associated with skin and hair phenotype, it was a better predictor of early-onset melanoma than was pigmentation characteristics. Physician-measured nevi and previous non-melanoma skin cancer were also strong predictors. There might be modest benefit to measuring MC1R genotype for risk prediction even if information about traditional self-reported or clinically measured pigmentation characteristics and nevi is already available.

摘要

背景

黑色素皮质素 1 受体 (MC1R) 基因变异非常常见,与黑色素瘤风险相关,但与传统危险因素相比,其对黑色素瘤风险预测的贡献尚不清楚。我们旨在 1) 评估 MC1R 基因型对早发性黑色素瘤预测的单独和增量贡献,并将其与医师测量和自我报告的传统危险因素的贡献进行比较,2) 开发包含 MC1R 的风险预测模型,并使用来自遗传相似黑色素瘤人群的独立数据集对这些模型进行外部验证。

方法

我们使用来自澳大利亚基于人群的病例对照家族研究的数据,纳入了 413 例病例和 263 例对照参与者,他们的 MC1R 基因型经过测序、临床皮肤检查和详细的问卷调查。我们使用无条件逻辑回归估计黑色素瘤的预测概率。结果使用英格兰类似研究的数据进行外部验证。

结果

当添加到仅包含人口统计学因素的基本多变量模型中时,MC1R 基因型将接受者操作特征曲线 (AUC) 的曲线下面积提高了 6%(从 0.67 提高到 0.73; P < 0.001),并将参与者的四分位分类提高了 26%。在一个更广泛的多变量模型中,对 AUC 有显著贡献的因素是 MC1R 基因型、痣的数量和既往非黑色素瘤皮肤癌;自我报告的痣的模型 AUC 为 0.78(95%CI 0.75-0.82),医生计数的痣的模型 AUC 为 0.83(95%CI 0.80-0.86)。不会进一步增加的因素是阳光和日光浴暴露以及色素沉着特征。将 MC1R 添加到包含色素沉着特征和其他自我报告的危险因素的模型中,AUC 增加了 2.1%(P = 0.01),四分位分类提高了 10%(95%CI 1-18%,P = 0.03)。

结论

尽管 MC1R 基因型与皮肤和头发表型密切相关,但它是早发性黑色素瘤的更好预测指标,而不是色素沉着特征。医生测量的痣和既往非黑色素瘤皮肤癌也是强有力的预测因素。即使已经有关于传统自我报告或临床测量的色素沉着特征和痣的信息,测量 MC1R 基因型进行风险预测可能会有适度的益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/509b/3766240/d33f9d3e75e4/1471-2407-13-406-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验