Suppr超能文献

利用自我评估的风险因素识别黑色素瘤高危人群。

Identifying Persons at Highest Risk of Melanoma Using Self-Assessed Risk Factors.

作者信息

Williams Lisa H, Shors Andrew R, Barlow William E, Solomon Cam, White Emily

机构信息

Department of Dermatology, Group Health Cooperative, Seattle, Washington, USA.

出版信息

J Clin Exp Dermatol Res. 2011;2(6). doi: 10.4172/2155-9554.1000129.

Abstract

OBJECTIVE

To develop a self-assessed melanoma risk score to identify high-risk persons for screening METHODS: We used data from a 1997 melanoma case-control study from Washington State, USA, where 386 cases with invasive cutaneous melanoma and 727 controls were interviewed by telephone. A logistic regression prediction model was developed on 75% of the data and validated in the remaining 25% by calculating the area under the receiver operating characteristic curve (AUC), a measure of predictive accuracy from 0.5-1 (higher scores indicating better prediction). A risk score was calculated for each individual, and sensitivities for various risk cutoffs were calculated. RESULTS: The final model included sex, age, hair color, density of freckles, number of severe sunburns in childhood and adolescence, number of raised moles on the arms, and history of non-melanoma skin cancer. The area under the receiver operating characteristic curve(AUC) was 0.70 (95% CI: 0.64, 0.77). The top 15% risk group included 50% of melanomas (sensitivity 50%). CONCLUSIONS: This self-assessed score could be used as part of a comprehensive melanoma screening and public education program to identify high-risk individuals in the general population. This study suggests it may be possible to capture a large proportion of melanomas by screening a small high-risk group. Further study is needed to determine the costs, feasibility, and risks of this approach.

摘要

目的

制定一个自我评估的黑色素瘤风险评分,以识别需要筛查的高危人群。方法:我们使用了来自美国华盛顿州1997年黑色素瘤病例对照研究的数据,通过电话对386例侵袭性皮肤黑色素瘤患者和727名对照进行了访谈。在75%的数据上建立逻辑回归预测模型,并通过计算受试者工作特征曲线下面积(AUC)在其余25%的数据中进行验证,AUC是一种预测准确性的度量,范围为0.5至1(分数越高表明预测越好)。为每个个体计算风险评分,并计算各种风险临界值的敏感性。结果:最终模型包括性别、年龄、头发颜色、雀斑密度、儿童和青少年时期严重晒伤的次数、手臂上凸起痣的数量以及非黑色素瘤皮肤癌病史。受试者工作特征曲线下面积(AUC)为0.70(95%CI:0.64,0.77)。最高15%风险组包含50%的黑色素瘤患者(敏感性为50%)。结论:这种自我评估评分可作为综合黑色素瘤筛查和公众教育项目的一部分,用于识别普通人群中的高危个体。本研究表明,通过筛查一小部分高危人群,有可能发现很大比例的黑色素瘤患者。需要进一步研究以确定这种方法的成本、可行性和风险。

相似文献

引用本文的文献

本文引用的文献

1
Predicting melanoma risk for the Australian population.预测澳大利亚人群的黑色素瘤风险。
Australas J Dermatol. 2011 May;52(2):109-16. doi: 10.1111/j.1440-0960.2010.00727.x. Epub 2011 Mar 1.
5
Final version of 2009 AJCC melanoma staging and classification.2009 年 AJCC 黑色素瘤分期与分类的最终版。
J Clin Oncol. 2009 Dec 20;27(36):6199-206. doi: 10.1200/JCO.2009.23.4799. Epub 2009 Nov 16.
6
Utility of adjuvant systemic therapy in melanoma.辅助性全身治疗在黑色素瘤中的效用。
Ann Oncol. 2009 Aug;20 Suppl 6(Suppl 6):vi30-4. doi: 10.1093/annonc/mdp250.
7
Melanoma.黑色素瘤
J Natl Compr Canc Netw. 2009 Mar;7(3):250-75. doi: 10.6004/jnccn.2009.0020.
10
Increasing burden of melanoma in the United States.美国黑色素瘤负担日益加重。
J Invest Dermatol. 2009 Jul;129(7):1666-74. doi: 10.1038/jid.2008.423. Epub 2009 Jan 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验