Suppr超能文献

引导视紫红质向初级纤毛运输的分子复合物。

Molecular complexes that direct rhodopsin transport to primary cilia.

机构信息

Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM 87131, USA.

Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131, USA.

出版信息

Prog Retin Eye Res. 2014 Jan;38:1-19. doi: 10.1016/j.preteyeres.2013.08.004. Epub 2013 Oct 14.

Abstract

Rhodopsin is a key molecular constituent of photoreceptor cells, yet understanding of how it regulates photoreceptor membrane trafficking and biogenesis of light-sensing organelles, the rod outer segments (ROS) is only beginning to emerge. Recently identified sequence of well-orchestrated molecular interactions of rhodopsin with the functional networks of Arf and Rab GTPases at multiple stages of intracellular targeting fits well into the complex framework of the biogenesis and maintenance of primary cilia, of which the ROS is one example. This review will discuss the latest progress in dissecting the molecular complexes that coordinate rhodopsin incorporation into ciliary-targeted carriers with the recruitment and activation of membrane tethering complexes and regulators of fusion with the periciliary plasma membrane. In addition to revealing the fundamental principals of ciliary membrane renewal, recent advances also provide molecular insight into the ways by which disruptions of the exquisitely orchestrated interactions lead to cilia dysfunction and result in human retinal dystrophies and syndromic diseases that affect multiple organs, including the eyes.

摘要

视紫红质是光感受器细胞的关键分子组成部分,但对于它如何调节光感受器膜运输和光感受细胞器(棒状外节)的生物发生,人们才刚刚开始了解。最近发现的视紫红质与 Arf 和 Rab GTPases 功能网络在细胞内靶向的多个阶段的协调分子相互作用的序列很好地符合了原发性纤毛发生和维持的复杂框架,而棒状外节就是其中的一个例子。本综述将讨论解析协调视紫红质纳入纤毛靶向载体的分子复合物的最新进展,包括招募和激活膜连接复合物以及与纤毛周质膜融合的调节剂。除了揭示纤毛膜更新的基本原理外,最近的进展还为分子洞察提供了线索,即协调相互作用的破坏如何导致纤毛功能障碍,并导致影响包括眼睛在内的多个器官的人类视网膜营养不良和综合征疾病。

相似文献

1
Molecular complexes that direct rhodopsin transport to primary cilia.
Prog Retin Eye Res. 2014 Jan;38:1-19. doi: 10.1016/j.preteyeres.2013.08.004. Epub 2013 Oct 14.
2
Molecular assemblies that control rhodopsin transport to the cilia.
Vision Res. 2012 Dec 15;75:5-10. doi: 10.1016/j.visres.2012.07.015. Epub 2012 Aug 7.
4
The Arf GAP ASAP1 provides a platform to regulate Arf4- and Rab11-Rab8-mediated ciliary receptor targeting.
EMBO J. 2012 Oct 17;31(20):4057-71. doi: 10.1038/emboj.2012.253. Epub 2012 Sep 14.
5
Protein networks and complexes in photoreceptor cilia.
Subcell Biochem. 2007;43:209-35. doi: 10.1007/978-1-4020-5943-8_10.
6
The ins and outs of the Arf4-based ciliary membrane-targeting complex.
Small GTPases. 2021 Jan;12(1):1-12. doi: 10.1080/21541248.2019.1616355. Epub 2019 May 17.
7
The Arf GEF GBF1 and Arf4 synergize with the sensory receptor cargo, rhodopsin, to regulate ciliary membrane trafficking.
J Cell Sci. 2017 Dec 1;130(23):3975-3987. doi: 10.1242/jcs.205492. Epub 2017 Oct 12.
8
Rhodopsin Trafficking and Mistrafficking: Signals, Molecular Components, and Mechanisms.
Prog Mol Biol Transl Sci. 2015;132:39-71. doi: 10.1016/bs.pmbts.2015.02.007. Epub 2015 Mar 25.
10
Retinal Degeneration Animal Models in Bardet-Biedl Syndrome and Related Ciliopathies.
Cold Spring Harb Perspect Med. 2023 Jan 3;13(1):a041303. doi: 10.1101/cshperspect.a041303.

引用本文的文献

1
Investigation of ABCA4 Missense Variants and Potential Small Molecule Rescue in Retinal Organoids.
Invest Ophthalmol Vis Sci. 2025 Jul 1;66(9):58. doi: 10.1167/iovs.66.9.58.
2
Kinase-dependent regulation of ciliary protein transport and its implications for therapy.
Front Mol Biosci. 2025 Jun 25;12:1638737. doi: 10.3389/fmolb.2025.1638737. eCollection 2025.
4
FGFR2 residence in primary cilia is necessary for epithelial cell signaling.
J Cell Biol. 2025 Jul 7;224(7). doi: 10.1083/jcb.202311030. Epub 2025 Apr 21.
6
Ccrk-Mak/Ick signaling is a ciliary transport regulator essential for retinal photoreceptor survival.
Life Sci Alliance. 2024 Sep 18;7(11). doi: 10.26508/lsa.202402880. Print 2024 Nov.
7
Contribution of intraflagellar transport to compartmentalization and maintenance of the photoreceptor cell.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2408551121. doi: 10.1073/pnas.2408551121. Epub 2024 Aug 15.
8
A Short Sequence Targets Transmembrane Proteins to Primary Cilia.
Cells. 2024 Jul 6;13(13):1156. doi: 10.3390/cells13131156.
9
Molecular and structural perspectives on protein trafficking to the primary cilium membrane.
Biochem Soc Trans. 2024 Jun 26;52(3):1473-1487. doi: 10.1042/BST20231403.
10

本文引用的文献

2
CEP162 is an axoneme-recognition protein promoting ciliary transition zone assembly at the cilia base.
Nat Cell Biol. 2013 Jun;15(6):591-601. doi: 10.1038/ncb2739. Epub 2013 May 5.
3
Crosstalk of Arf and Rab GTPases en route to cilia.
Small GTPases. 2013 Apr-Jun;4(2):70-7. doi: 10.4161/sgtp.24396. Epub 2013 Apr 1.
4
Rab and Arf proteins in genetic diseases.
Traffic. 2013 Aug;14(8):871-85. doi: 10.1111/tra.12072. Epub 2013 Apr 29.
5
Protein sorting, targeting and trafficking in photoreceptor cells.
Prog Retin Eye Res. 2013 Sep;36:24-51. doi: 10.1016/j.preteyeres.2013.03.002. Epub 2013 Apr 3.
9
Tubby is required for trafficking G protein-coupled receptors to neuronal cilia.
Cilia. 2012 Nov 1;1(1):21. doi: 10.1186/2046-2530-1-21.
10
A single valine residue plays an essential role in peripherin/rds targeting to photoreceptor outer segments.
PLoS One. 2013;8(1):e54292. doi: 10.1371/journal.pone.0054292. Epub 2013 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验